P=1 atm. vapor. liquid

Similar documents
Thermodynamic Properties are Measurements p,t,v, u,h,s - measure directly -measure by change

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

The Second Law implies:

MAE 320 Thermodynamics HW 4 Assignment

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

and for compressible flow

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermochemistry. Thermochemistry

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Analysis of Enthalpy Approximation for Compressed Liquid Water

å Q d = 0 T dq =0 ò T reversible processes 1

2-18. (a) For mercury, (b) For water,

What determines how matter behaves? Thermodynamics.

MAE 431 ENERGY SYSTEMS I.

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Chemistry 114 First Hour Exam

Work and Heat Definitions

(b) The heat transfer can be determined from an energy balance on the system

Advanced Chemistry Practice Problems

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

Thermodynamics: Gas Laws

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase.

A review of A new determination of molecular dimensions by Albert Einstein

Psychrometrics. 1) Ideal Mixing 2) Ideal Gas Air 3) Ideal Gas Water Vapor 4) Adiabatic Saturation

Thermodynamics I Chapter 2 Properties of Pure Substances

By Dr. Salah Salman. Problem (1)

Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS

THE INTERNATIONAL SYSTEM OF UNITS (SI) SI Base Units. Quantity Name of unit Symbol

Fundamental concept of metal rolling

ME 201 Thermodynamics

Problem Set 1 Solutions 3.20 MIT Professor Gerbrand Ceder Fall 2001

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions.

Chapter 5 Darcy s Law and Applications

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

4-64. Review Problems

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

How can standard heats of formation be used to calculate the heat of a reaction?

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

1. Perform the following unit conversions by hand. The unit conversion feature on your calculator may be used to check your work.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

Chemistry/ Biotechnology Reference Sheets

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Thermochemistry Heats of Reaction

Index to Tables in SI Units

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Control Volume (Eulerian Approach)

To receive full credit all work must be clearly provided. Please use units in all answers.

Lecture 12: Chemical reaction equilibria

MAE 110A. Homework 6: Solutions 11/9/2017

Chapter 4 Practice Problems

Main Menu. SEG Houston 2009 International Exposition and Annual Meeting. Summary

ENERGY ANALYSIS: CLOSED SYSTEM

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj

Homework 1. Problem 1 Browse the 331 website to answer: When you should use data symbols on a graph. (Hint check out lab reports...

5. The Bernoulli Equation

4F-5 : Performance of an Ideal Gas Cycle 10 pts

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

EF 152 Exam #3, Fall, 2012 Page 1 of 6

CHAPTER 13 Temperature and Kinetic Theory. Units

Chapter 9 Chemical Reactions NOTES

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

4 Fe + 3 O 2 2 Fe 2 O 3

Physics 1200 Mechanics, Kinematics, Fluids, Waves

ME 201 Thermodynamics

Thermodynamics Lecture Series

How can standard heats of formation be used to calculate the heat of a reaction?

Quasi Steady State Modelling of an Evaporator

General Chemistry II, Unit I: Study Guide (part I)

since (Q H /T H ) = (Q L /T L ) for reversible cycles. Also, since Q diff is a positive quantity. Thus,

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

ME 201 Thermodynamics

Chem 111 Summer 2013 Key III Whelan

Pure Substances Phase Change, Property Tables and Diagrams

MAE 110A. Homework 3: Solutions 10/20/2017

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

CHAPTER 8 ENTROPY. Blank

Semester 2 AP Chemistry Unit 12

Unit 9: The Mole- Guided Notes What is a Mole?

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

CEE 370 Environmental Engineering Principles

MAT 1800 FINAL EXAM HOMEWORK

Institute for Competitive Examinations

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

ME 201 Thermodynamics

O C S polar - greater force. H polar greater force. H polar. polar H-bond

Chem 75 February 16, 2017 Exam 2 Solutions

Chapter One. Matter and Energy - Chemistry the study of matter and its changes the "central science" Natural Laws

Lecture 38: Vapor-compression refrigeration systems

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2

Transcription:

P1 atm ar liqid Q

Gien and P Ser Heat Regin i, P < P sat > sat Cmressed Liqid Regin i, P > P sat < sat

SEAM PRESUE AND EMPERAURE ABLES

Satrated Liqid Line Satrated Var Line s s g g g g

ree ables emeratre able at saced s Pressre able at saced P s Sereat able at saced and P 6 Prerties emeratre Pressre Vlme Internal Energy Entaly Entry

Slid-Liqid-Gas Pase Diagram

Satratin liqid internal energy at 0 C 0. able Base Satrated liqid entaly at 5 C 104.89 kj/kg Satrated ar entry at 5 C 8.558 kj/kg K Entaly at 0 C, 00 kpa assme satrated liqid entaly at 0 C 8.96 kj/kg emeratre satrated ar wit an internal energy 96.1 kj/kg 15 C Entaly arizatin at 10 C 477.7 kj/kg

able A-7 Metric, able A-7E Englis, able A-4 Metric, able A-5 Metric, able A-4E Englis, able A-5E Englis, EMPERAURE ABLE PRESSURE ABLE able A-6, Metric,, able A-6E, Englis,, SUPERHEA ABLE

w Pase Real Gas Prerties ( ) g g g g g g g x x x x 1 Qality m m x m m m V V V + + + + g g g g x x x + + +

Qality, x 58.07 +.64 98. 686.7 BU/lb x + x ( + x + x 58.07 +.64 104.7 75.4 BU/lb g g g 00.0161.64 (64%) 467.7.0161 g ) 90 Find te rerties F emeratre able A-4E age 880 s 58.07 58.07b.169 ( ) water at 90 ( g ) s F, 00 t s g g g /lb. 110.7 1140..008 s s s s + x s g.196 +.64 1.856 1.15 BU/lb R.0161t / lb 00. t /lb g 467.7t / lb

10 MPa satrated steam as an entaly 010 kj/kg. Wat is its internal energy? + x 010 kj/kg 1407.56 + x 117.1 x.4574 + x g g 19.04 +.4574 1151.4 1919.69 kj/kg EES Prgram x qality(steam,p 10000., 010) x.4576 intenergy(steam, P 10000., 010) 1919.65 kj/kg

Steam at 0 C as an entaly 1800 kj/kg. Wat is te internal energy? + x 1800 kj/kg 8.96 + x 454.1 x.7 + x g g 8.95 +.7 19.0 1707.5 kj/kg

SEAM SUPERHEA ABLE

SUPERHEA ABLE Entaly at 700 C and.10 Ma 98. kj/kg emeratre at entry 8.864 and.05 Ma 400 C Entaly at.05 MPa and entry 10.666 kj/kg C 5147.7 kj/kg

Steam initially at a temeratre 1100 C and a ressre.10 MPa nderges a rcess dring wic its entry remains cnstant t a ressre.01 MPa. Wat is te entaly and temeratre te steam at te end te rcess? Entry at 1100 C,.1 MPa 10.1659kJ/kg K Entaly at.01 MPa, entry 10.1659 705.4 kj/kg emeratre at.01 MPa, entry 10.1659 600 C.01 MPa s

Engineering Eqatin Sler - EES Flid Prerty Inrmatin - 69 lids aailable ermysical Fnctins - 5 rerties calclated Eqatins Windw entaly(steam, 00.,P00) sereated ar entaly(steam,00.,x1) satrated ar intenergy(steam,00.,x0.) satrated liqid ressre(steam,00.,x0.) satratin ressre ermysical Fnctins entry intenergy ressre qality density entaly isidealgas temeratre lme Fnctin Argments H seciic entaly P ressre S seciic entry temeratre U seciic internal energy V seciic lme X qality

EES FLUIDS FUNCINS

able EES Prgram Satratin internal energy at 4 kpa l Pressre able g 11.45kJ/kg 415.kJ/kg l l g g intenergy(steam, P 4.,X 0) 11.kJ/kg intenergy(steam, P 414.9 4., X 1.) Entaly and lme water at 150 kpa and 0 C Internal energy water at 0 MPa and 00 C l l Sereat able satrated liqid @ 0 l l l l 15.75 kj/kg satrated liqid@0.001004m /kg emeratre able satrated liqid @ 00 1.0 kj/kg C C C l l l l l l entaly(steam, 15.67kJ/kg lme(steam,.001004m /kg intenergy(steam, 1.446 kj/kg 0., 0., 00., 500.) 500.) 0000.)

Linear Interlatin wit Variables @( 450 C, 7 MPa) Steam Sereat able 450 5 mpa 949.7 7 5 Fr te ressre table entry,.4 0 5 e desired ressre, 7 kpa, is 40 % te dierence between table ales. 7 MPa 898.4 mst be at te same dierence. 81.4 All te ter rerties at 7 kpa 0 MPa EES entaly(steam, 901.7 kj/kg.% 450., 7000) dierence, table and interlatin

Linear Interlatin wit Variables @( 450 C, 7 MPa) Steam Sereat able (5)949.7 450 C 450 5 mpa 949.7 7 MPa 898.4 0 MPa 81.4 @(7) B (0)81.4 A m x + b A C ( 81.4-949.7) ( 7 5) ( 0 5) 51. + 947.7 898.4 kj/kg B + @(5) + 947.7 C 5 7 0 EES entaly(steam, 901.7 kj/kg.% 450., 7000) dierence, table and interlatin

kg ar and 1 kg liqid R-14a is cntained in a rigid tank at 0 C. Wat is te lme te tank? I te tank is eated ntil te ressre? reaces.6 MPa? Wat is te qality, and entaly te mixtre liqid and ar? V V V V Ater eating, V cnstant, m cnstant cnstant x 1 1 1 1 1 V m 1kg.0008157 + kg.058.108 m V1 m + V @ 0 C + m.108 m 4 kg @.6 MPa + x.07.00008196.041.0008196 + x 1 g g.07 m /kg.787(78.7%) 79.84 +.787 179.71 11.7 kj/kg g g @ 0 C age 84, ablea 11 g @.6 MPa age 84, able 0 C A -1 Q.6 MPa 1.5716 MPa

kg ar and kg liqid R-14a is cntained in a istn cylinder deice. e lme te ar is.1074 cbic meters. Wat is te temeratre and ressre? I te cylinder and its cntents are eated ntil lme is.15 cbic meters wat is te qality? x g1 g at V V m g1 g1.058 m /kg @ 0 C,.15m.0 m /kg g.1074 m kg,.15 5.0 m /kg.058 m /kg.5716 MPa Dring te eating rcess te ressre V m @ 0 C + x g @ 0 C is cnstant..0.0008157.84 (8.4%).058.0008157 age 84, ablea 11 0 C 1 x rerty (rerty) (rerty) g rerty (rerty) + x (rerty) g Q

ermdynamic Prblem Sling ecniqe 1. Prblem Statement Carbn dixide is cntained in a cylinder wit a istn. e carbn dixide is cmressed wit eat remal rm 1,1 t,. e gas is ten eated rm, t, at cnstant lme and ten exanded witt eat transer t te riginal state int.. Scematic. Select ermdynamic System en - clsed - cntrl lme a clsed termdynamic system cmsed t te mass carbn dixide in te cylinder C 4. Prerty Diagram state ints - rcesses - cycle Q,, W Q W 1,1 5. Prerty Determinatin, s 1 6. Laws ermdynamics Q? W? E? material lws?

Linear Interlatin wit Variables @( 470 C, 7 MPa) Steam Sereat able 450 470 500 5 MPa 949.7 161.4 7 MPa 898.4 991.0 19.88 0 MPa 81.4 081.1 Interlate irst at 450 C and at 500 C between 5 and P 0 t get @ ( 450 and 500, 7). between 450 C and 500 C. 7 5 ressre.4 0 5 5 470 450 emeratre 500 450 entaly(steam, 470., 7000.) EES 00.95 kj/kg, 0 50 en interlate at 7 MPa.4.47% dierence, table and interlatin

Linear Interlatin wit Variables @( 450 470 500 Interlate at 450 C and 500 C between 5 and P 0 t get @ ( between 450 C and 500 C. m x + b ( 19.88 898.4) ( 470-450) ( 500 450) 991. 470 C, 5 MPa 949.7 161.4 450 and 500, kj/kg A C 7 MPa) 7 MPa 898.4 991.0 19.88 7). B + ( 450, 7) Steam Sereat able 0 MPa 81.4 en interlate at 7 MPa + 898.4 081.1 (470,7) (450) 898.4 P7 MPa (500) 19.88 C B A 450 470 500 EES entaly(steam, 470., 7000.) 00.95 kj/kg,.47% dierence, table and interlatin

Ideal Gas Law nr V R Weigt Mleclar n m Weigt Mleclar mles mass K kmle m kpa r K kmle kj 8.14 R lbmle R lb/lbm 1545.15 R weigt mleclar R R K R, re, temerat abslte - kpa sia, ressre, abslte - mr V R LAW GAS (PERFEC) IDEAL * * * * * 1 1 1 1 1 1 CHARLES LAW BLYES LAW ) (1atm and 0 SP gas at mlecles/mle 10 6.0.4 liters. any gas ne(1) mle LAW S AVGADR' C

water Ideal Gas R cnstant seciic eat

Wat is te mass 1. m and a gage ressre 500 kpa. Atmseric ressre xygen at 4 C is 97 kpa R m gage + atmsere 500 kpa + 97 kpa 597 kpa 8.14kJ/kmle V 597 kpa 1. m R.5981kPa m /kg K r kpa m /kmle ( 4 C + 7.16 K) K.5981 9.8 kg kpa m /kg alsablea 1 Wat is te lmemass 1. lbm and a gage ressre 500 sia. Atmseric ressreis14.7 sia. air at 14 F gage + V.5047t atmsere 1545.15lb / lbm R air 8.97 m R 1. lbm V 500 sia + 14.7 sia 514 sia R / lbmle t lb 5.6 lbm R 514 sia 144 t /in 5.6t lb/ lbm R ( 14 F + 459.69 R) als able A 1E in mlar nits

IDEAL GAS EQUAIN FRMS - Fr Air kpa kpa lb t lb t si lb t P m R m m t t t t kg mle kg kpa m 8.14 kg mle kpa m.87 kg mle K K lbmle t lb 1545.15 lbm R lbm t lb 5.5 lbm R lbmle si lb 10.7 lbmle R lbm BU.06855 lbm R R K R R K R kpa m R 8.14 / 8.96 kg mle K t lb R 1545.15 /8.96 lbm R t lb R 1545.15 /144 lbm R t lb R 1545.15 /8.96/778 lbm R

e seciic lme R 1.476 t e seciic lme kpa m R 8.14 kg mle air 1545.15 /8.96 5.5 t lb/lbm R R R /lb.8417 m /kg air at 75 5.5 t lb/lbm R 14.7 lb/in 144 in air at 4 / 8.96 K.87 kpa m /kg 101.5 kpa F and14.7 sia ( 459.69 R + 75 F) /t C and101.5 kpa ( 7.15 K + 4 F)

Air initially at a lme 1 m and a ressre 5 kpa exands at a cnstant temeratre t a lme m. Wat is te inal ressre? mass cnstant, R1 m 1V1 R 1 m V 1 1 R V 1 1 m 5 kpa m 117.9 kpa R 1 V1 R V ( 7.15 + ) 1 cnstant.86 4 kpa m V V 1 1 1 m mcnst cnst m

SPECIFIC HEAS FR GASSES

SPECIFIC HEA C cnst c ( ) d c ( ) c d c d d c sbsistting r d and d c wit same nits and k FR IDEAL GAS NLY d c d c d d c c c c c cnst Fr an ideal gas seciic eats are assmed cnstant By deinitin + sbstitting R + R dierentiating d d + Rd C d + R c d + Rd R k 1 R c

IDEAL GAS IMPRVEMENS Entaly,, internal energy,, and entry, s. are nt abslte bt Dierences rm a base. c c c able Base State c able Base State ( ) ( ) d d ( ),c c ( ) ables A -17, A -17 t A -, A - E

IDEAL GAS WIH VARIBLE SPECIFIC HEA

b) a) -104 600 able A - a, + 1 e)ees K t1000 seciic eat at te aerage temeratre able A - b, d) ( ) c d, c a + b + c + d 1 8.9( 1000 600) +.5(.0001571)( 1000 600 ) 5 1 9 4 4 (.8081 10 )( 1000 600 ) (.878081 10 )( 1000 600 ) b)aerage seciic eat er te temeratre range, c)rm temeratre seciic eat, d) ablea 18E @1000 Determine te entaly cange,, nitrgen in kj/kg as it is eated rm K (76 C,140 able A 18E, K @600 F) sing : e) 4 c EES. @800 a) c emirical seciic eat eqatin able A c, 544 kj/kmle/8.01 @800 1.11kJ/kg K K 1.09448.5 kj/kg 1.09448 kj/kg K 1.11 kj/kgk ( 1000 600) ( 1000 600) 448.5kJ/kg 415.6 kj/kg K 0,19 kj/kgmle 1756 kj/kgmle 1566 kj/kgmle 1566kJ/kgmle/8.01kg/kgmle 448.58 kj/kg entaly(nitrgen, 1000., 101.5) entaly(nitrgen, 600., 101.5) c c) seciic eat at rm temeratre 1544 kj/kmle 447.8 kj/kg 449.46kJ/kg

PRINCIPAL F CRRERSPNDING SAES CMPRESSIBILIY FACR Z Z is abt te same r all gasses at te same redced temeratre and te same redced ressre were: P Z Z R V mr P R R critical critical ( 0)

VAN DER WAALS EQUAIN F SAE - 187 a + ( b) R ( - ) a intermleclar rces b lme gas mlecles d a R critical critical critical 7 R 64 b 0 critical critical a critical d b critical R 8 critical critical 0 0 0 critical int

HERMDYNAMIC PRPERY MEASURMEN ermdynamic rerties are indeendent at r rcess and are exact dierentials. Heat and Wrk are nt exact dierentials bt are deendent n rcess r at. gas real ale r a gas,a 0 r an ideal Jle msn Ceicient c c 60 eqatins time, at a 6 termdynamic rerites d ds s d ) (s, s + s sed wit te First Law

J Ceicient cnstant

Crse Prerty Srces 1) Ideal Gas Law wit cnstant seciic eats ) ables Steam Rerigerant Air ) EES CD NIS r me wrk cnenience

EQUAIN F SAE ERRRS nitrgen

NIS Webbk Prerties tt://webbk.nist/g/cemistry/lid emeratre able r Water in.1 degree increments rm 40 t 40 degrees. Select Units Select able ye

Select lid

Set lw and ig temeratre and temeratre increment.