Thermodynamic Properties are Measurements p,t,v, u,h,s - measure directly -measure by change

Similar documents
Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase.

P=1 atm. vapor. liquid

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Chapter 4 Practice Problems

ENERGY ANALYSIS: CLOSED SYSTEM

Chapter 4: Properties of Pure Substances. Pure Substance. Phases of a Pure Substance. Phase-Change Processes of Pure Substances

Thermodynamics I Chapter 2 Properties of Pure Substances

ME 201 Thermodynamics

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

The Second Law: The Machinery

Chapter 1 Fundamentals

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

AE301 Aerodynamics I UNIT A: Fundamental Concepts

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

C H A P T E R ,1752'8&7,21

ME 201 Thermodynamics

GAS. Outline. Experiments. Device for in-class thought experiments to prove 1 st law. First law of thermodynamics Closed systems (no mass flow)

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

TDEC202 - Energy II (Recitation #3)

To receive full credit all work must be clearly provided. Please use units in all answers.

Earlier Lecture. Basics of Refrigeration/Liquefaction, coefficient of performance and importance of Carnot COP.

δq T = nr ln(v B/V A )

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Thermodynamics in combustion

Phase transition. Asaf Pe er Background

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 First Law of Thermodynamics and Energy Equation

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

ME 201 Thermodynamics

Chapter 4. Energy Analysis of Closed Systems

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

GEF2200 vår 2017 Løsningsforslag sett 1

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

(b) The heat transfer can be determined from an energy balance on the system

CHAPTER. Properties of Pure Substances

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Thermodynamics I. Properties of Pure Substances

Chapter 1 Solutions Engineering and Chemical Thermodynamics 2e Wyatt Tenhaeff Milo Koretsky

d dt T R m n p 1. (A) 4. (4) Carnot engine T Refrigerating effect W COPref. = 1 4 kw 5. (A)

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK)

Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 1 - THERMODYNAMIC SYSTEMS TUTORIAL 2

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 5 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Internal Energy in terms of Properties

Basic Thermodynamics Module 1

3. High Temperature Gases FPK1 2009/MZ 1/23

Theory of turbomachinery. Chapter 1

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Efficiencies. Damian Vogt Course MJ2429. Nomenclature. Symbol Denotation Unit c Flow speed m/s c p. pressure c v. Specific heat at constant J/kgK

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 3 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

MAE 110A. Homework 3: Solutions 10/20/2017

df da df = force on one side of da due to pressure

ME 201 Thermodynamics

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

SPC 407 Sheet 6 - Solution Compressible Flow Fanno Flow

Fundamentals of Thermodynamics SI Version

ME Thermodynamics I. Lecture Notes and Example Problems

Dr Ali Jawarneh. Hashemite University

Gases. Characteristics of Gases. Unlike liquids and solids, gases

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

THERMODYNAMICS. Contents

Common Terms, Definitions and Conversion Factors

Comparison of Solids, Liquids, and Gases

Some Fundamental Definitions:

First Law of Thermodynamics

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Lecture 2 PROPERTIES OF GASES

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

ATMOS Lecture 7. The First Law and Its Consequences Pressure-Volume Work Internal Energy Heat Capacity Special Cases of the First Law

Properties of Gases. Gases have four main characteristics compared with solids and liquids:

School of Chemical & Biological Engineering, Konkuk University

Thermodynamics Introduction and Basic Concepts

Chapter 19 Thermal Properties of Matter. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

FUGACITY. It is simply a measure of molar Gibbs energy of a real gas.

Engineering Thermodynamics

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Pure Substances Phase Change, Property Tables and Diagrams

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 7. Entropy: A Measure of Disorder

Readings for this homework assignment and upcoming lectures

Pure Substance Properties and Equation of State

Ideal Gas Law. September 2, 2014

First Name Last Name CIRCLE YOUR LECTURE BELOW: Div. 1 10:30 am Div. 2 2:30 pm Div. 3 4:30 pm Prof. Gore Prof. Udupa Prof. Chen

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Evaporation

Chapter 5: The First Law of Thermodynamics: Closed Systems

QUIZZES RIEPJCPIγPJEJJJY

Chapter 11. Molecular Composition of Gases

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Part One: The Gas Laws. gases (low density, easy to compress)

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

Transcription:

Thermodynamic Proerties are Measurements,T,, u,h,s - measure directly -measure by change s Tables T T Proerty Data Cure its Tables Correlation's, Boyles Law Tables c@tc limited hand calculations Equations o State, RT Tables Calculation Modules NIST, EES, HYSYM interactie, callable

P atm aor liquid Q

Gien T and P Suer Heat Region i, < sat sat @T T>T @ Comressed Liquid Region i, > @ T sat T<T @ sat

STEAM PRESUE AND TEMPERATURE TABLES

T Saturated Liquid Line Saturated Vaor Line h u s h u s g g g g

Three Tables Temerature Table at saced T s Pressure Table at saced P s Suerheat Table at saced T and P 6 Proerties Temerature Pressure Volume Internal Energy Enthaly Entroy

Solid-Liquid-Gas Phase Diagram

Saturation liquid internal energy at 0 C 0. Table Base Saturated liquid enthaly at 5 C 04.89 kj/kg Saturated aor entroy at 5 C 8.558 kj/kg K Enthaly at 0 C, 00 kpa assume saturated liquid enthaly at 0 C 8.96 kj/kg Temerature o saturated aor with an internal energy o 96. kj/kg 5 C Enthaly o aorization at 0 C 477.7 kj/kg

Table A-7 Metric T, Table A-7E English T, Table A-4 Metric, T Table A-5 Metric, Table A-4E English, T Table A-5E English, TEMPERATURE TABLE PRESSURE TABLE Table A-6, Metric, T, Table A-6E, English, T, SUPERHEAT TABLE

water T saturation saturation at 400ka and 00 C @400 ka 95.04C @ 00C 8587.9kPa R 4a at 500 kpa and 6 C Tsaturation@ 500 ka 5.7C @ 6 C 6.ka saturation T 00C 8587.9kPa 95.04 400ka C constant T suerheated 5.7C 500 kpa 6.ka 6 C subcooled constant

Two Phase Real Gas Proerties ( ) g g g g g g g x x x x Quality m m x m m m V V V + + + + g g g g x u x u u h x h h + + +

Quality, x g 00.06 x.64 (64%) 467.7.06 u u + x (u u ) g u u + x u g u 58.07 +.64 98. u 686.7 BTU/lb h h + x h g h 58.07 +.64 04.7 h 75.4 BTU/lb T 90 o Find the roerties o F Temerature Table u58.07 h58.07 ( ) s.65 water at 90 ( g ) o u h s F, 00 t g g g /lb. u 040. h 07.7 s.008 s s + x s s.65 +.64.8966 s g o.54 BTU/lb R.06t / lb 00. t /lb g 467.7t / lb

Engineering Equation Soler - EES Fluid Proerty Inormation - 69 luids aailable Thermohysical Functions - 5 roerties calculated Equations Window henthaly(steam, T00.,P00) suerheated aor henthaly(steam,t00.,x) saturated aor uintenergy(steam,t00.,x0.) saturated liquid ressure(steam,t00.,x0.) saturation ressure Thermohysical Functions entroy intenergy ressure quality density enthaly isidealgas temerature olume Function Arguments H seciic enthaly P ressure S seciic entroy T temerature U seciic internal energy V seciic olume X quality

EES FLUIDS FUNCTIONS

Table EES Program Saturation internal energy at 4 kpa u l u Pressure Table g.45kj/kg 45.kJ/kg u u u u l l g g intenergy(steam, P 4.,X 0).kJ/kg intenergy(steam, P 44.9 4., X.) Enthaly and olume o water at 50 kpa and 0 C Internal energy u o water at 0 MPa u and 00 C l l Suerheat Table h h saturated liquid @ 0 h l l l l 5.75 kj/kg saturated liquid@0.00004m /kg Temerature Table u saturated liquid @ 00.0 kj/kg o o o C C C u u l l h h l l l l enthaly(steam,t 5.67kJ/kg olume(steam,t.00004m /kg intenergy(steam,t.446 kj/kg 0., 0., 00., 500.) 500.) 0000.)

Sole Windows Equations

Windows Arrays

Windows Plot Window

0 MPa saturated steam has an enthaly o 00 kj/kg. What is its internal energy? h h + x h g 00 kj/kg 407.56 + x 7. x.4574 u u + x u g u 9.04 +.4574 5.4 u 99.69 kj/kg EES Program x quality(steam,p 0000.,h 00) x.4576 u intenergy(steam,p 0000.,h 00) u 99.65 kj/kg

Steam at 0 C has an enthaly o 800 kj/kg. What is the internal energy? h h + x h 800 kj/kg 8.96 + x 454. x.7 u u + x u g g u 8.95 +.7 9.0 u 707.5 kj/kg

STEAM SUPERHEAT TABLE

SUPERHEAT TABLE Enthaly at 700 C and.0 Ma 98. kj/kg Temerature at entroy o 8.864 and.05 Ma 400 C Enthaly at.05 MPa and entroy o 0.666 kj/kg C 547.7 kj/kg

Steam initially at a temerature o 00 C and a ressure o.0 MPa undergoes a rocess during which its entroy remains constant to a ressure o.0 MPa. What is the enthaly and temerature o the steam at the end o the rocess? T Entroy at 00 C,. MPa 0.659kJ/kg K Enthaly at.0 MPa, entroy 0.659 705.4 kj/kg Temerature at.0 MPa, entroy 0.659 600 C.0 MPa s

Linear Interolation with Variables h@(t 450 C, 7 MPa) Steam Suerheat Table Table Values 5 mpa 7 MPa 0 MPa T 450 h 949.7 h 898.4 h 8.4 7 5 For the ressure table entry,.4 0 5 The desired ressure, 7 kpa, is 40 % o the dierence between table alues. All the other roerties at 7 kpa must be at the same dierence. EES h enthaly(steam,t 450., 7000) h 90.7 kj/kg.% dierence, table and interolation

SPREAD SHEET WORLD EXCELL ADD-IN 40 luids 4 sets o units

SPREADSHEET WORLD THERMAL FLUIDS PROPERTIES 4 5 6 7 8 9 CALL A B C D E F G H I J T 00 P 5 TTPros("AIR","EE_F", "P", $C$,"T", $C$) P T u s h X STATE ERROR RETURN 5 6.9669 00 80.558.0855 5.797 erheated a 0 sia t^/lbm deg F BTU/lbm BTU/lbm-R BTU/lbm nd

A saturated mixture o kg water and kg aor in contained in a iston cylinder deice at 00 ka. Heat is added and the iston, initially resting on stos, begins to moe at a ressure o 00 ka. Heating is stoed when the total olume in increased by 0%. Find: a) the initial and inal temeratures. b) the mass o liquid water when the ressure reaches 00 kpa and the iston starts to moe. c) the work done by the exansion. at 00kPa, T 99.6 x kg aor.6 5kg total u u.0004+.6 (.694.0004).068m /kg u + x + x u g g 47.40+.6 088. 670.6kJ/kg Q 00 ka kg kg.88

Point V Interolation romtablea 6 u u h h V h h g W 5 kg.06 5.08m u@ h@. V h @ at. MPa, (.06,P. MPa) 6.kJ/kg (.068,P. MPa) 86.47kJ/kg.8857 suerheated Point at. MPa (.9,P. MPa) 988.65 kj/kg dv + 6.096 W 0 + 00 kpa 6.096 m 5 kg.9 dv 0 + ) ( V V ) ( 6.096 m 5.08m ) 0.kJ constant,- Q E+ W Q E+ V Q H Q m h Q W - - ( h ) alteratiely, Q - Q 5 (988.65 86.47) 860.9 kj m ( u u ) constant,- Q E + W W 0 Q E U Q m u ( u ) Q 5 (6.-670.6) Q 47.05 kj.88

Interolation or h Suerheat TableA -6 enthaly @ (. MPa,.9) T 50 00.989.9.6 h 97. 09..9-.989 ratio o.6-.989 h 988.65 kj/kg.7

Sread Sheet World module solution water aor Proerties at gien and x x 0.6 00,000 P T u s h X STATE 00000.0689 99.654 670.48 4.96567 77.6 0.6 Mixed regio Pascals m^/kg deg C kj/kg kj/kg-k kj/kg nd Proerties at gien and 00,000 P T u s h X STATE 00000.0689 7.56 6.078 7.8959 86.44 erheated a Pascals m^/kg deg C kj/kg kj/kg-k kj/kg nd Vm x 5.084094 V. * V 6.009 V/m.08 00,000 Proerties at gien and P T u s h X STATE 00000.08 59.0808 744.746 7.748 988.78 erheated a Pascals m^/kg deg C kj/kg kj/kg-k kj/kg nd Q -m*(h-h) 86.709 W - Q --m*(u-u) 0.6 Q -m*(u-u) 47.986

EES Solution Q 00 ka kg kg

kg aor and kg liquid R-4a is contained in a rigid tank at 0 C. What is the olume o the tank? I the tank is heated until the ressure? reaches.6 MPa? What is the quality, and enthaly o the mixture o liquid and aor? V V V V Ater heating, V constant, m constant constant x h h V m kg.000857 + kg.058.08 m V m + V @ 0 C + m.08 m 4 kg @.6 MPa + x.07.0000896.04.000896 h + x h g g.07 m /kg.787(78.7%) 79.84 +.787 79.7.7 kj/kg g g @ 0 C age 84, TableA g @.6 MPa age 84, Table T 0 C A - Q.6 MPa.576 MPa

kg o aor and kg o liquid R-4a is contained in a iston cylinder deice. The olume o the aor is.074 cubic meters. What is the temerature and ressure? I the cylinder and its contents are heated until olume is.5 cubic meters what is the quality? x g g at V V m g g.058 m /kg @ 0 C,.5m.0 m /kg g.074 m kg,.5 5.0 m /kg.058 m /kg.576 MPa During the heating rocess the ressure V m @ 0 C + x g @ 0 C is constant..0.000857.84 (8.4%).058.000857 age 84, TableA 0 C T x roerty (roerty) (roerty) g roerty (roerty) + x (roerty) g Q

Thermodynamic Problem Soling Technique. Problem Statement Carbon dioxide is contained in a cylinder with a iston. The carbon dioxide is comressed with heat remoal rom T, to T,. The gas is then heated rom T, to T, at constant olume and then exanded without heat transer to the original state oint.. Schematic. Select Thermodynamic System oen - closed - control olume a closed thermodynamic system comosed to the mass o carbon dioxide in the cylinder CO 4. Proerty Diagram state oints - rocesses - cycle Q T, T, W Q W T, 5. Proerty Determination T, T u h s 6. Laws o Thermodynamics Q? W? E? material lows?

AVOGADRO' S LAW Ideal Gas Law IDEAL (PERFECT) GAS LAW One() moleo any gas.4 liters. 6.0 0 o STP (atm and 0 C) BOLYES LAW molecules/moleo gas at CHARLES LAW T T RT V mrt - absolute ressure, sia,kpa o o T - absolute temerature, R, K * R R molecular weight * R 545.5 o t lb R lbmole kj kmole K * R 8.4 or o kpa m o kmole K T T mass moles Molecular Weight m n Molecular Weight V * R T * nr T

water Ideal Gas RT constant seciic heat

o What is the mass o. m o oxygen at 4 C and a gage ressure o 500 kpa. Atmosheric ressure is 97 kpa + 500 kpa + 97 kpa 597 kpa gage atmoshere o o 8.4 kj/kmole K or kpa m /kmole K R O.598 kpa m /kg alsotablea V 597 kpa. m m 9.8 kg o o RT.598 kpa m /kg 4 C + 7.6 K ( ) o What is the olume mass o. lbm o air at 4 F and a gage ressure o 500 sia. Atmosheric ressure is 4. 7 sia. + 500 sia + 4.7 sia 54 sia air gage atmoshere 545.5 t lb / lbmole R t lb R 5.6 also Table A E in BTU and si units m R T V V.5047t o 8.97 lbm R ( 9R o ) o o. lbm 5.6 t lb/ lbm R 4 F + 459.6 54 sia 44 t /in

IDEAL GAS EQUATION FORMS - For Air P m R T kpa m O kpa m kmole 8.4 K O kmole K kpa m O kpa m kpa m kg.87 K R 8.4 / 8.96 O o kg K kmole K lb t lb O t lbmole 545.5 R O t lbmole R lb t lb O t lb t lbm 5.5 R R 545.5 /8.96 O O t lbm R lbmole R si lb O t lb si t lbm.704 R O R 545.5 /44/8.96 O lbm R lbmole R lb BTU O t lb t lbm.06855 R R 545.5 /8.96/ O 778 O t lbm R lbmole R

The seciic olume o R.476 t The seciic olume o kpa m R 8.4 kg mole air 545.5 /8.96 5.5 t lb/lbm R RT RT /lb.847 m /kg O air at 75 5.5 t lb/lbm R 4.7 lb/in 44 in air at 4 / 8.96 K.87 kpa m /kg 0.5 kpa o F and4.7 sia o o ( 459.69 R + 75 F) o /t C and0.5 kpa o o ( 7.5 K + 4 F)

Air initially at a olume o m and a ressure o 5 kpa exands at a constant temerature to a olume o m. What is the inal ressure? mass constant, RT m V R T m V R T V m 5 kpa m 7.9 kpa R T V R T V ( 7.5 + T ) T constant.86 4 kpa m V V m mconst Tconst m

SPECIFIC HEATS FOR GASSES

h SPECIFIC HEAT C T const T h c ( T) dt u c ( T) h c dh c dt dt u c subsistuting or dh and du c with same units and k FOR IDEAL GAS ONLY du c dt c dt dt c c c c c const For an ideal gas seciic heats are assumed constant By deinition h u + substituting RT h u + RT dierentiating dh du + RdT C u dt + R c dt + RdT R k R c

IDEAL GAS IMPROVEMENTS Enthaly, h, internal energy, u, and entroy, s. are not absolute but Dierences rom a base. h u c T c c Table Base State T c Table Base State ( T) ( T) dt dt ( T),c c ( T) Tables A -7, A -7 to A -, A - E

IDEAL GAS WITH VARIBLE SPECIFIC HEAT

b) a) -04 600 Table A - a, h + O h e)ees K to000 seciic heat at the aerage temerature Table A - b, d) ( ) c T dt, c a + bt + ct + dt 8.9( 000 600) +.5(.00057)( 000 600 ) 5 9 4 4 (.808 0 )( 000 600 ) (.87808 0 )( 000 600 ) b)aerage seciic heat oer the temerature range, c)room temerature seciic heat, d) TableA 8E h h@000 Determine the enthaly change, h, o nitrogen in kj/kg as it is heated rom O K (76 C,40 Table A 8E, O O K h@600 O O F) using : e) 4 c EES. @800 a) h c O emirical seciic heat equation Table A c, h 544 kj/kmole/8.0 @800 T.kJ/kg K K.09448.5 kj/kg h.09448 kj/kg K. kj/kgk ( 000 600) ( 000 600) 448.5kJ/kg 45.6 kj/kg K 0,9 kj/kgmole 756 kj/kgmole 566 kj/kgmole h 566kJ/kgmole/8.0kg/kgmole 448.58 kj/kg h enthaly(nitrogen, T 000., 0.5) enthaly(nitrogen, T 600., 0.5) c c) O seciic heat at room temerature 544 kj/kmole 447.8 kj/kg h 449.46kJ/kg

PRINCIPAL OF CORRERSPONDING STATES COMPRESSIBILITY FACTOR Z Z is about the same or all gasses at the same reduced temerature and the same reduced ressure where: P Z Z RT V mrt P T R R T critical T critical ( 0)

VAN DER WAALS EQUATION OF STATE - 87 a + ( b) RT ( - ) a intermolecular orces b olume o gas molecules d a RT critical T critical critical 7 R T 64 b 0 critical critical a critical d b T critical R T 8 critical critical 0 T 0 0 critical oint T

THERMODYNAMIC PROPERTY MEASURMENT Thermodynamic roerties are indeendent o ath or rocess and are exact dierentials. Heat and Work are not exact dierentials but are deendent on rocess or ath. gas real alue or a gas,a 0 or an ideal T Joule Tomson Coeicient T c T u c T h 60 equations time, at a 6 thermodynamic roerites d u ds s u du ) (s, u h h s + T T s used with the First Law

T JT Coeicient h hconstant

Course Proerty Sources ) Ideal Gas Law with constant seciic heats ) Tables Steam Rerigerant Air ) EES CD NIST or home work conenience

EQUATION OF STATE ERRORS nitrogen

NIST Webbook Proerties tt://webbook.nist/go/chemistry/luid Temerature Table or Water in. degree increments rom 40 to 40 degrees. Select Units Select Table Tye

Select luid

Set low and high temerature and temerature increment.