ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc.

Similar documents
Designing of Analog Filters.

Active Filters an Introduction

Design of Two-Channel Low-Delay FIR Filter Banks Using Constrained Optimization

Active Filters an Introduction

Lecture 10 Filtering: Applied Concepts

Lecture #9 Continuous time filter

Figure 1 Siemens PSSE Web Site

Digital Control System

HOMEWORK ASSIGNMENT #2

Follow The Leader Architecture

5.5 Application of Frequency Response: Signal Filters

Design of Digital Filters

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Digital Signal Processing

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

Operational transconductance amplifier based voltage-mode universal filter

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

Lecture 28. Passive HP Filter Design

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

RaneNote BESSEL FILTER CROSSOVER

ROOT LOCUS. Poles and Zeros

Control Systems. Root locus.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

Roadmap for Discrete-Time Signal Processing

Control Systems. Root locus.

55:041 Electronic Circuits

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Question 1 Equivalent Circuits

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

Lecture 8 - SISO Loop Design

Efficiency Optimal of Inductive Power Transfer System Using the Genetic Algorithms Jikun Zhou *, Rong Zhang, Yi Zhang

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

OVERSHOOT FREE PI CONTROLLER TUNING BASED ON POLE ASSIGNMENT

Design By Emulation (Indirect Method)

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

55:041 Electronic Circuits

Chapter 2: Problem Solutions

USE OF INTERNET TO DO EXPERIMENTS IN DYNAMICS AND CONTROL FROM ZACATECAS MEXICO IN THE LABORATORY OF THE UNIVERSITY OF TENNESSEE AT CHATANOOGAA.

Designing Circuits Synthesis - Lego

Filters and Tuned Amplifiers

DESIGN AND ANALYSIS OF FLEXIBLE STRUCTURES WITH PARAMETRIC UNCERTAINTIES FOR ACTIVE VIBRATION CONTROL USING ANSYS

EE247 Lecture 10. Switched-Capacitor Integrator C

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 6. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

Electronic Circuits EE359A

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Iterative Decoding of Trellis-Constrained Codes inspired by Amplitude Amplification (Preliminary Version)

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Function and Impulse Response

ME 375 FINAL EXAM Wednesday, May 6, 2009

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Electronic Circuits EE359A

RADIATION THERMOMETRY OF METAL IN HIGH TEMPERATURE FURNACE

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5

Heat Transfer Modeling using ANSYS FLUENT

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Liquid cooling

Chapter 17 Amplifier Frequency Response

MAE140 Linear Circuits Fall 2012 Final, December 13th

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Chapter 5 Part 2. AC Bridges. Comparison Bridges. Capacitance. Measurements. Dr. Wael Salah

Filters and Equalizers

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design

Solution & visualization in The Sturm Liouville problem

No-load And Blocked Rotor Test On An Induction Machine

Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

x with A given by (6.2.1). The control ( ) ( )

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

EE482: Digital Signal Processing Applications

Summary of last lecture

ECEN620: Network Theory Broadband Circuit Design Fall 2018

March 18, 2014 Academic Year 2013/14

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

EE Control Systems LECTURE 14

CHAPTER 5. The Operational Amplifier 1

The Operational Amplifier

Control Systems. Lecture 9 Frequency Response. Frequency Response

Chapter 9: Controller design. Controller design. Controller design

Publication V by authors

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

Lecture 6: Resonance II. Announcements

Midterm 3 Review Solutions by CC

Stability Criterion Routh Hurwitz

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

Transcription:

ELECTRONIC FILTERS Celo Joé Faria de Araújo, M.Sc.

A Ideal Electronic Filter allow ditortionle tranmiion of a certain band of frequencie and ure all the remaining frequencie of the ectrum of the inut ignal. The frequency ectrum i a rereentation of amlitude veru frequencie of thi ignal. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc.

CLASSIFICATION Electronic Filter Claification in term of Technology Ued Claification in term of function accomlihed Claification in term of Reone-Function Paive Filter Low-Pa Filter Butterworth Filter Active Filter High-Pa Filter Chebyhev Filter Digital Filter Band-Pa Filter Elitic or Cauer Filter Band-Reject Filter Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc.

FUNCTION ACCOMPLISHED K K H ( j ) Ideal Real K K H ( j ) Real Ideal c Low-Pa Filter (log cale) c High-Pa Filter (log cale) K K H ( j ) Ideal Real K K H ( j ) Real Ideal (log cale) c o c c o c Band-Pa Filter Band-Reject Filter (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 3

ACTIVES FILTERS Advantage: Sure ue of inductor; Eay Deign of Comlex Filter by cacade of imle tage; A coniderable amlification of inut ignal i oible; Deign Flexibility. Diadvantage: Power uly i neceary; The frequency reone i limited by active device (O-Am, Tranitor) frequency reone; It not often aly in medium and high ower ytem. Deite thee diadvantage it widely ued in everal alication, uch a: telecommunication and indutrial intrumentation. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4

STANDARD REQUIREMENTS FOR DESIGN OF APPROXIMATION FUNCTION LOW-PASS FILTER (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 5 Lo db Amin Tranition Paband Paband Amax Stoband

NON-FLAT STOPBAND REQUIREMENTS FOR LOW-PASS FILTER (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 6 A min A min Lo db Paband Amax

STANDARD REQUIREMENTS FOR DESIGN OF APPROXIMATION FUNCTION HIGH-PASS FILTER Amin (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 7 Lo db Stoband Tranition Paband Paband Amax

NON-FLAT STOPBAND REQUIREMENTS FOR HIGH-PASS FILTER Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 8 A min Lo db Paband A min A min Amax (log cale)

STANDARD REQUIREMENTS FOR DESIGN OF APPROXIMATION FUNCTION BAND-PASS FILTER Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. (log cale) 9 Lo db Amin o o 3 4 B Stoband Tranition Paband Tranition Paband Paband Stoband Amax 3 4 B i the aband width of BP filter o i the center (geometric mean) of the aband of BP filter

NONSYMMETRICAL REQUIREMENTS FOR BAND-PASS FILTER o o Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. (log cale) 0 A min Lo db 3 ' 4 B Paband A min Amax 3 4 B i the aband width of BP filter o i the center (geometric mean) of the aband of BP filter 4

STANDARD REQUIREMENTS FOR DESIGN OF APPROXIMATION FUNCTION BAND-REJECT FILTER o o 3 4 B Amin Tranition Paband Stoband Tranition Paband Paband Paband (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Lo db Amax 3 4 B i the aband width of BR filter o i the center (geometric mean) of the toband of BR filter

NONSYMMETRICAL REQUIREMENTS FOR BAND-REJECT FILTER o o 3 4 B (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Lo db A max A min A max 3 3 4 B i the aband width of BR filter o i the center (geometric mean) of the toband of BR filter '

A SECOND-ORDER GAIN FUNCTION FOR LOW-PASS FILTER GAIN V V O IN Q j Sloe = 40dB/decade Gain (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 3 Lo db 0dB

A SECOND-ORDER GAIN FUNCTION FOR HIGH-PASS FILTER GAIN V V O IN Q j Sloe = -40dB/decade Gain (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4 Lo db 0dB

A SECOND-ORDER GAIN FUNCTION FOR BAND-PASS FILTER GAIN V V O IN Q Q j Sloe = 40dB/decade Gain (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 5 Lo db Sloe = -40dB/decade 0dB

A SECOND-ORDER GAIN FUNCTION FOR BAND-REJECT FILTER GAIN V V O IN Q j Gain (log cale) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 6 Lo db 0dB

A SECOND-ORDER GAIN FUNCTION FOR LOW-PASS NOTCH FILTER V V GAIN O z ; z IN Q j jz Gain (log cale) -jz Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 7 Lo db z

A SECOND-ORDER GAIN FUNCTION FOR HIGH-PASS NOTCH FILTER V V GAIN O z ; z IN Q j jz Gain (log cale) -jz Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 8 Lo db z

GAIN EQUALIZERS Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 9

DELAY EQUALIZERS T o v t ) v ( t ) V ( ) V ( ) o ( in T o o in e H ( ) H V V o e in ( ( ) ) T o H ( j ) e j ( j ) H ( j ) T ( o T o ) d delay d ( ) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 0

Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. DELAY EQUALIZERS Second-order (all-a) IN O Q Q V V GAIN ) ( ) ( 0 ) ( Q arc tg Q arc tg j H db j H ) ( Q Q d d delay j Gain

EQUALIZATION OF CABLE DELAY Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc.

Filter ole-zero attern Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 3

Bode Plot Aroximation Technique 35dB 6 0 H ( ) ( 00)( 00 00 ) 00 400 Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4 Lo db 3dB 3 db 35 db 35 db 00 rad order H ( ) / 400 rad / oitava 3 K 00 00 00 Q K ( ) 00 00 H K 0 0 6 Frequency (rad/) 0 log 00 0 6 00 Q 00 00 3 Q j Lo (db)

BUTTERWORTH APPOXIMATION Requirement: A max A min 0, A min 0 log 0, max 0 A Order: n Correction Factor: 0 0, A máx log Root of a third-order normalized filter Root of the normalized filter: Gain j S j k n n k e onde k,,..., n /H(S) S+ S +,44S + 3 (S +S+)(S+) 4 (S + 0,76537S + ) (S +,84776S + ) 5 (S + 0,6803S + ) (S +,6803S + ) (S + ) n /3 - Denormalization: Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. S n The ole are jut the root at left half lane 5

Magnitude reone for Butterworth filter of variou order with =. Note that a the order increae, the reone aroache the ideal brickwall tye tranmiion. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 6

Grahical contruction for determining the ole of a Butterworth filter of order N. All the ole lie in the left half of the -lane on a circle of radiu 0 = (/) /N, where i the aband deviation arameter : A max /0 0 (a) the general cae, (b) N =, (c) N = 3, (d) N = 4. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 7

BUTTERWORTH APPOXIMATION Examle Requirement: = 00 rad/ A max = 0.5 db = 400 rad/ A min = db order n log 0 0 : log 0, 0, x x 0.5 400 00.73 Correction factor : 0 0, x 0.5 0.35 Normalized H ( S ) S.44 S Denormalization Denormalized H : S ( ) n 0.0059 877.4 39.6 877.4 Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 8

CHEBYSHEV APPOXIMATION Requirement: A max A min Order : n 0 coh 0 coh 0, 0, A A min máx where Root of the normalized filter: Root of a third-order normalized filter Gain j coh inh n The ole are jut the root at left half lane Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. S k k k k en co j k where n n k k k enh coh 0,,,..., n n enh enh n inh inh n 0 A máx 0 Denormalization : S 9,

Sketche of the tranmiion characteritic of a rereentative even- and odd-order Chebyhev filter. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 30

CHEBYSHEV APPOXIMATION (Order from Plot) Requirement: A max A min Lo of LP Chebyhev aroximation for A max = 0.5dB Lo of LP Chebyhev aroximation for A max = 0.50dB Lo of LP Chebyhev aroximation for A max = db Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 3

CHEBYSHEV APPOXIMATION (Polynominal from Table) Requirement: A max A min n Numerator of /H(S) A max = 0.5dB Denominator (k) S + 4.08 4.08 S +.79668S +.403.05405 3 (S + 0.767S +.33863) (S+0.767).070 4 (S + 0.4504S +.695) (S +.063S + 0.45485) 0.535 5 (S + 0.7005S +.09543) (S + 0.70700S + 0.5364) (S + 0.43695) 0.5676 n Numerator of /HS) A max = 0.50dB Denominator (k) S +.8678.8678 S +.456S +.560.4338 3 (S + 0.6646S +.445) (S+0.6646) 0.7570 4 (S + 0.3507S +.0635) (S + 0.84668S + 0.3564) 0.35785 5 (S + 0.393S +.03578) (S + 0.5865S + 0.47677) (S + 0.3633) 0.789 n Numerator of /H(S) A max = db Denominator (k) S +.9653.9653 S +.09773S +.05 0.986 3 (S + 0.4947S + 0.9940) (S+0.4947) 0.4930 4 (S + 0.7907S + 0.98650) (S + 0.67374S + 0.7940) 0.4565 5 (S + 0.789S + 0.9883) (S + 0.4684S + 0.4930) (S + 0.8949) 0.83 Denormalization : S Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 3

CHEBYSHEV APPOXIMATION Examle Requirement: = 00 rad/ A max = 0.5 db = 600 rad/ A min = 0 db 600 00 3 from grah n 3 From table H(S) normalized i obtained H ( S ) 0.7570 ( S 0.6646 S.445)( S 0.6646) Denormaliz ation : S 00 Denormalized H ( ) 575600 ( 5.3 45698)( 5.3) Banda Detail Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 33

ELLIPTIC (CAUER) APPOXIMATION Requirement: A max A min H() = Lo Function Denormalization : S Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 34

ELLIPTIC APPOXIMATION Examle Requirement: = 00 rad/ A max = 0.5 db = 600 rad/ A min = 0 db 600 3 from table n 00 From table H(S) normalized i obtained ( S 7.4858) H ( S ) 0.083974 ( S.3575 S.5553) Denormaliz ation : S 00 Denormalized H ( ) 0.083974 ( ( 6994) 7.4 6.8) Banda Detail Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 35

Phae and delay characteritic Characteritic of a fourth-order Chebyhev (A max = 0.5dB); (a) Lo, (b) Delay, (c) Ste inut, (d) Ste reone. Characteritic of a fourth-order Butterworth (A max = 3dB); (a) Lo, (b) Delay, (c) Ste reone. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 36

H(S) normalized i H ( S ) B B BESSEL APPROXIMATION n n (0) ( S ) n 3 4 5 Where B n (S) i the nth order olynomial which i defined by the following recurive equation B B 0 ( ( S S ) ) S B n ( S ) ( n ) B n ( S ) S B n ( S ) Beel Aroximation Function in Normalized and Factored Form Denominator Numerator S+ S +3S+3 3 (S +3.6778S+6.45944)(S+.39) 5 (S +5.794S+9.403) (S +4.0758S+.4878) 05 (S +6.7039S+4.75) (S +4.64934S+8.563) (S+3.64674) 945 and Lo of LP Beel Aroximation T o Denormalization S T o T o Delay (%) T T o 00% 50 n n e n ( n ) Delay of LP Beel Aroximation Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 37

BESSEL APPROXIMATION Examle Requirement: a) The delay mut be flat within ercent of the DC value u to KHz. b) The attenuation at 6KHz mut exceed 5dB. Solution. Try a fourth-order Filter. % 0 =.9 (from delay Beel aroximation lot) = (6/).9 = 5.7 Attenuation i only db = 5.7 (from lo Beel aroximation lot). Try a fifth-order Filter. % 0 =.5 (from delay Beel aroximation lot) = (6/).5 = 7.5 Attenuation i 9.5 db = 5.7 (from lo Beel aroximation lot) From table : H S ) (S 6.7039S Denormalization ( 4.75) (S 945 4.64934S 8.563) (S 3.64674).5 4 T o.989 0 ec S T K o H ( ) 3.370 3.608 0 Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4 8 0 3.608 0 8.338 4.5894 4 0 8 0 4.5894 0 8.8335.8335 0 4 0 4 Delay (%) T 00% khz 0,5% f T o 38

DELAY EQUALIZERS Function Aroximation GAIN V V O IN a a b b b GAIN V V O IN N a i a b b i i i i The number of delay ection N and their defining arameter (ai, bi) for aroximating a given delay hae are uually obtained by comuter otimization. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 39

DELAY EQUALIZERS Examle Delay Equalization of a fouth-order Chebyhev (A max =0.5dB, aband edge = rad/ec) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 40

FREQUENCY TRANSFORMATIONS HP, BP or BR requirement LP requirement HLP() H () HP HBP() HBR() Block diagram of the frequency tranformation rocedure Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4

Requirement A A HP min max LP Normalized A min A max H(S) LP Normalized i obtained from LP Requirement Normalized H(S) LP normalized can be tranformed to a high-a function by the frequency tranformation S H ( ) H ( S ) Examle: A A HP LP S HP min max 000 500 5 db 3 db rad rad / / LP A A HIGH-PASS FILTERS Normalized min 5 db max 3 db H HP ( ) H LP ( S ) S 000 H HP 500 rad/ -> -8dB 3 ( ) 3 6 ( 0 0 )( 0 3 K rad/ -> -3dB ) Butterworth H LP ( S ) ( S S )( S ) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 4

Requirement BP o A A min max 3 4 BAND-PASS FILTERS LP Normalized A min A max 4 3 H(S) BP Normalized i obtained from LP Requirement Normalized H(S) LP normalized can be tranformed to a band-a function by the frequency tranformation H Examle: o S BP ( ) H LP ( S ) o S A max = 0.5dB A min = 0 db Paband = 500 Hz to 000 Hz Stoband = DC to 75 Hz and 000 Hz to 3 4 A A min max BP 500 000 75 88 0 db 0.5 db rad rad rad / / rad / / 88 000 LP Normalized A min 0 db A max 0.5 db 75 500 3.08 H HP ( ) Ellitic H 0.084 4 H LP ( S ) 0.083947 S BP ( ) H LP ( S 4.6 0 3 4 3 ) S. 5.48 0 0 S 7.4858.3575 S.5553 4 500000 500 8 7 3.89 8.4 0 0 4 0 3.89 Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 0 4 43 '

Requirement BR o A A min max BAND-REJECT FILTERS LP Normalized A min A max 3 4 H(S) BR Normalized i obtained from LP Requirement Normalized H(S) LP normalized can be tranformed to a band-reject function by the frequency tranformation H S Examle: BP ( ) H LP ( S o ) S A max = db A min = 0 db Paband = below 000 Hz and above 6000 Hz Stoband = 500 Hz to 3000 Hz 3 4 A A BP min 0 max 000 6000 000 3000 db db rad rad rad rad / / / / LP A A o 4 6000 3000 3 Normalized min 0 db max db 000 000 5 H HP ( Chebyhev ) 0.89 H H LP ( S ) S BP ( ) H LP ( S 4 379.70 4 3 ) S 0.986.09773 S 4 473740.3 36893505 5000 6000000.05 5.60 7.409 Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 0 0 6 5.60 0 6 44 '

Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Firt-order filter. 45

Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Firt-order all-a filter. 46

Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Second-order filtering function. 47

Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. Second-order filtering function. (continued ) 48

Second-order filtering function. (continued ) Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 49

Realization of variou econd-order filter function uing the LCR reonator: (a) general tructure, (b) LP, (c) HP, (d) BP, (e) notch at 0, (f) general notch, (g) LPN ( n 0 ), (h) LPN a, (i) HPN ( n < 0 ). Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 50

REFERENCES SEDRA, Adel S. and SMITH, Kenneth C. Microelectronic Circuit. Oxford Univerity Pre. DARYANANI, Gobind. Princile of Active Network Synthei and Deign. John Wiley & Son. LATHI, B. P. Signal Proceing & Linear Sytem. Berkeley- Cambridge Pre. RUSTON, Henry and BORDOGNA, Joeh. Electric Network: function, filter, analyi. MacGraw-Hill. NOCETI FILHO, Sidnei. Filto Seletore de Sinai. Editora da UFSC. Electronic Filter Electrical Circuit - Celo Joé Faria de Araújo, M.Sc. 5