GENERALIZED SURFACE PLASMON RESONANCE SENSORS USING METAMATERIALS AND NEGATIVE INDEX MATERIALS

Similar documents
MATERIAL with negative refractive index was first

SCATTERING CROSS SECTION OF A META-SPHERE

Effects of Loss Factor on Plane Wave Propagation through a Left-Handed Material Slab

Optical Properties of Left-Handed Materials by Nathaniel Ferraro 01

Frequency Dependence Effective Refractive Index of Meta Materials by Effective Medium Theory

Extinction properties of a sphere with negative permittivity and permeability

On the signs of the imaginary parts of the effective permittivity and permeability in metamaterials

Progress In Electromagnetics Research, PIER 35, , 2002

Left-handed and right-handed metamaterials composed of split ring resonators and strip wires

Cloaking The Road to Realization

Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields

A SYMMETRICAL DUAL-BAND TERAHERTZ META- MATERIAL WITH CRUCIFORM AND SQUARE LOOPS. Microsystem and Information Technology, Shanghai , China

arxiv:physics/ v1 [physics.optics] 29 Aug 2005

ELECTROMAGNETIC WAVE PROPAGATION THROUGH SINGLE NEGATIVE INDEX MATERIAL

PEMC PARABOLOIDAL REFLECTOR IN CHIRAL MEDIUM SUPPORTING POSITIVE PHASE VELOC- ITY AND NEGATIVE PHASE VELOCITY SIMULTANE- OUSLY

Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients

Electromagnetic Absorption by Metamaterial Grating System

Phase and group velocities of surface waves in left-handed material waveguide structures

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang Department of Electronic Science and Engineering Nanjing University Nanjing , China

Limitations on Sub-Diffraction Imaging with a Negative Refractive Index Slab

Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors

On Electromagnetic-Acoustic Analogies in Energetic Relations for Waves Interacting with Material Surfaces

Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients

Magnetic response of split-ring resonator metamaterials: From effective medium dispersion to photonic band gaps

Electromagnetic Metamaterials

Super-reflection and Cloaking Based on Zero Index Metamaterial

Effects of surface waves on the behavior of perfect lenses

PHYSICAL REVIEW B 71,

RECIPROCAL INVISIBLE CLOAK WITH HOMOGE- NEOUS METAMATERIALS

Workshop on New Materials for Renewable Energy

FDTD Analysis on Optical Confinement Structure with Electromagnetic Metamaterial

Negative refraction of photonic and polaritonic waves in periodic structures

arxiv:physics/ v1 [physics.class-ph] 23 Apr 2002

WAVEGUIDES FILLED WITH BILAYERS OF DOUBLE- NEGATIVE (DNG) AND DOUBLE-POSITIVE (DPS) METAMATERIALS

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

SURFACE WAVE CHARACTER ON A SLAB OF METAMATERIAL WITH NEGATIVE PERMITTIVITY AND PERMEABILITY

Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications

Negative epsilon medium based optical fiber for transmission around UV and visible region

Design of Metamaterials in HFSS and Extraction of Permittivity and Permeability using NRW Method

07/7001 METAMATERIALS FOR SPACE APPLICATIONS

Enhancing and suppressing radiation with some permeability-near-zero structures

Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit

Electromagnetic energy in a dispersive metamaterial

Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

Subwavelength resolution with three-dimensional isotropic transmission-line lenses

Study of the surface and bulk polaritons with a negative index metamaterial

ELECTROMAGNETIC SCATTERING FROM A CHIRAL- COATED NIHILITY CYLINDER

Suprabhat Vishwakarma 1, Bimal garg 2 1 Student, 2 Associate Professor. Electronics Department, Mitsgwalior (m.p.) India.

Negative refraction and left-handed behavior in two-dimensional photonic crystals

Research on the Negative Permittivity Effect of the Thin Wires Array in Left-Handed Material by Transmission Line Theory


Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance

Flute-Model Acoustic Metamaterials with Simultaneously. Negative Bulk Modulus and Mass Density

Characterization of Left-Handed Materials

Numerical studies of left-handed materials and arrays of split ring resonators

Usama Anwar. June 29, 2012

II Theory Of Surface Plasmon Resonance (SPR)

Broadband Subwavelength Imaging with a Wire Medium Slab Loaded with Graphene Sheets

Theoretical study of left-handed behavior of composite metamaterials

Light Localization in Left-Handed Media

Mueller matrices for anisotropic metamaterials generated using 4 4 matrix formalism

An efficient way to reduce losses of left-handed metamaterials

Evanescent modes stored in cavity resonators with backward-wave slabs

ISSN: [Shrivastava* et al., 5(12): December, 2016] Impact Factor: 4.116

Left-handed materials: Transfer matrix method studies

Negative refractive index in a four-level atomic system

3D PRINTING OF ANISOTROPIC METAMATERIALS

Constitutive parameter extraction and experimental validation of single and double negative metamaterials Y. Hollander 1 R.

The physics of the perfect lens

Omni Directional Reflection Behaviour of Negative Index Materials

Progress In Electromagnetics Research M, Vol. 20, 81 94, 2011

Canalization of Sub-wavelength Images by Electromagnetic Crystals

New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics

arxiv: v2 [cond-mat.other] 20 Nov 2008

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders.

arxiv:cond-mat/ v1 22 Jul 2002

GHz magnetic response of split ring resonators

Negative Refraction and Subwavelength Lensing in a Polaritonic Crystal

arxiv: v3 [cond-mat.mtrl-sci] 19 Jan 2009

Photonic band-gap effects and magnetic activity in dielectric composites

Electromagnetic Wave Propagation Lecture 13: Oblique incidence II

Wavelength Dependent Microwave Devices Based on Metamaterial Technology. Professor Bal Virdee BSc(Eng) PhD CEng FIET

TUNABLE METAMATERIAL DESIGN COMPOSED OF TRIANGULAR SPLIT RING RESONATOR AND WIRE STRIP FOR S- AND C- MICROWAVE BANDS

Composites with tuned effective magnetic permeability

Operation of Evanescent Wave Intensity Using Metamaterials of Negative Permittivity and Permeability

Dual-band planar electric metamaterial in the terahertz regime

Reversed Cherenkov Radiation in Left Handed Meta material Lecture, Nov 21, 2012 Prof. Min Chen

Physics of Propagation in Left-Handed Guided Wave Structures at Microwave and Millimeter Wave Frequencies

Gradient-index metamaterials and spoof surface plasmonic waveguide

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS

Modal Characteristics of Quadruple-Clad Planar Waveguides with Double Negative Metamaterials

Sign of the refractive index in a gain medium with negative permittivity and permeability

Finite-difference time-domain analysis of the tunneling and growing exponential in a pair of ε- negative and µ-negative slabs

Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources

On the Group Front and Group Velocity in a Dispersive Medium Upon Refraction From a Nondispersive Medium

Metamaterials. Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime

STRUCTURES with a period less than the wavelength of

Wave Motion. On the limit and applicability of dynamic homogenization. Ankit Srivastava a,, Sia Nemat-Nasser b. h i g h l i g h t s.

Transcription:

Progress In Electromagnetics Research, PIER 5, 39 5, 005 GENERALIZED SURFACE PLASMON RESONANCE SENSORS USING METAMATERIALS AND NEGATIVE INDEX MATERIALS A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga Box 35500, Department of Electrical Engineering University of Washington Seattle, Washington 9895, USA Abstract Optical surface plasmon resonance sensors have been known for a long time. In this paper, we discuss the use of metamaterials to construct a surface plasmon sensor which can be used at microwave frequencies. We review the conditions for the existence of surface plasmon and the use of the forward and backward surface waves. A sharp dip in the reflection coefficient occurs when the propagation constant of the incident wave along the surface is nearly equal to the propagation constant of the plasmon surface wave and may be used to probe bulk material characteristics or to determine metamaterial characteristics. Numerical examples are given to illustrate the basic characteristics. Introduction Formulations for a Generalized Surface Plasmon Resonance Sensor 3 Conventional Optical Surface Plasmon Resonance Sensor 4 Surface Plasmon for Metamaterials 5 Surface Plasmon Resonance Sensor 6 Surface Plasmon Sensor with Gap 7 Frequency Dependence and Effects of Loss 8 Conclusions Acknowledgment References

40 Ishimaru, Jaruwatanadilok, and Kuga. INTRODUCTION The phenomenon of surface plasmon resonance has been known for a long time and has been used for chemical sensors and remote sensing systems []. It makes use of a prism and a thin metal layer deposited upon the prism. The p-polarized (TM) reflected light exhibits a sharp dip at the incident angle where the propagation constant along the surface closely matches the propagation constant of the surface plasmon between the metal and the bulk material. This resonance occurs due to the negative dielectric constant of the metal, such as gold or silver, at optical frequencies. In this paper, we explore the use of the NIM (Negative Index Materials), and more generally metamaterials, to produce the surface plasmon resonance at microwave frequencies. Metamaterials and NIM have attracted considerable attention in recent years [ 6], and the surface plasmon on NIM has also been discussed [7, 8]. We first discuss the surface wave (surface plasmon) modes between metamaterials and the dielectric. This requires the study of all wave types which may exist between the medium with arbitrary and µ and the ordinary medium. We discuss the classification of wave types. In particular, we discuss the regimes in the µ- diagram where the forward and backward surface waves exist. These regimes give rise to the surface waves, and the reflection coefficient exhibits a sharp dip at this particular angle, similar to the conventional optical surface plasmon resonance sensor. We clarify the relationships between the p (TM) and s (TE) polarizations. We examine the fields inside NIM, and the interesting behaviors of the Poynting vectors, which point to the opposite direction in the inside and outside of NIM. We discuss the angular and frequency sensitivities of this phenomenon and the effect of the loss and possible difficulties in implementation for practical applications.. FORMULATIONS FOR A GENERALIZED SURFACE PLASMON RESONANCE SENSOR Let us consider the layered structure shown in Fig.. A plane wave is incident from the medium with and µ on the layer with and µ bounded by the medium 3 with 3 and µ 3. Here and µ are relative permittivity and relative permeability normalized to free space o and µ o. The reflection coefficient R is well known [9] R = A + B/Z 3 Z (C + D/Z 3 ) A + B/Z 3 + Z (C + D/Z 3 ) ()

Progress In Electromagnetics Research, PIER 5, 005 4 θ z θ R µ, n = µ x d µ, n = µ µ, n = µ 3 3 3 3 3 Figure. Geometry of layered metamaterials. where A = D = cos k z d, B = jz sin k z d, C = j sin k zd k zi = k i (k i sin θ ),i=,, 3, k i = k o n i k o = ω/c is the free space wave number k zi for p-polarization (E x,e z,h y ) ω Z i = o i ωµ o µ i for s-polarization (H x,h z,e y ) k zi Z In this formulation, both i and µ i are complex. However, for a passive medium, we require, using exp(jωt) time dependence, Im( i ) < 0 Im(µ i ) < 0 Im(n i ) < 0 Im(k zi ) < 0 Re µ i / i > 0 () In the following sections, we examine () for metamaterials and discuss its physical meanings. 3. CONVENTIONAL OPTICAL SURFACE PLASMON RESONANCE SENSOR Before we discuss NIM surface plasmon resonance, we give a brief review of the conventional optical sensor making use of the surface

4 Ishimaru, Jaruwatanadilok, and Kuga plasmon resonance. A prism with and µ has a thin metallic layer with and µ, and this is inserted into a medium whose characteristics are to be determined. A p-polarized (TM) plane wave is incident from the plasma and the reflected wave is measured as functions of angle and frequency. For the conventional surface plasmon sensor, µ = µ = µ 3 =. R θ prism x d gold or silver bulk material 3 Figure. Surface plasmon geometry and the reflection coefficient plot of a conventional optical surface plasmon sensor =.5, = 0 j0., 3 =.75, µ = µ = µ 3 =,d=0.05 µm, λ=0.6 µm. As an example, Fig. shows a reflection coefficient R as a function of the incident angle. The metal layer, normally gold or silver, has a negative real part of at optical frequency. There are two angles θ c and θ pl in Fig., which are closely related to the material characteristics. The angle θ c is close to the total reflection angle between the medium and medium 3, n sin θ c = n 3 (3) The angle θ pl is when the propagation constant of the incident wave along the surface is close to the propagation constant of the surface plasmon between medium and 3, k o n sin θ pl = k sp = k o S (4) The propagation constant of the surface wave is well known [, 9] S = 3 + 3 (5) The sharp dip at θ pl is used to determine 3, and there is no surface plasmon for s-polarization.

Progress In Electromagnetics Research, PIER 5, 005 43 4. SURFACE PLASMON FOR METAMATERIALS We now generalize the conventional plasmon sensor in Section 3 to include the metamaterials with arbitrary and µ. To do this, we first examine the plasmon which exists between the medium with d and µ d and the metamaterial with m and µ m. z d > 0, µ d > 0 x µ m m (metamaterial) Figure 3. Surface wave along x between two media. For p-polarization, we have H yd = exp{ jk o C d z jk o Sx} for z>0 H ym = exp{+jk o C m z jk o Sx} for z<0 (6) Satisfying the boundary condition that E x and H y be continuous at z =0,weget C d + C m = 0 (7) d m From this, we get the propagation constant S S = n d m n m d m d (8) The above equation is for the p-polarized (TM) wave. But it can be shown that for the s-polarized (TE) wave, S is given by switching and µ S = n d µ m n mµ d µ m µ (9) d Here, the medium for z > 0 is assumed to be an ordinary medium with d > 0 and µ d > 0, and this may be called the double positive medium (DPO) as opposed to the double negative medium (DNG) with <0 and µ<0. Here, we assume that the losses are negligibly small and therefore and µ are real with negligible negative imaginary parts.

44 Ishimaru, Jaruwatanadilok, and Kuga First, we note that in order to have the surface wave, we require S >n d (0) Furthermore, the choice of the sign for S needs to be determined by Eq. (7). Also, we need to choose S such that Im(C d ) < 0 Im(C m ) < 0. () In Fig. 4, we show the regions in µ- diagram where S >n d. 3 SW+ µ m /µ d 0 - - SW- S -3-3 - - 0 3 m / d Figure 4. Forward (SW+) and backward (SW ) surface plasmons. The curve in the third quadrant is given by (µ m m )/(µ d d )=. Eqs. (7), (8) and the conditions () give two regions where the surface wave propagates in the forward (+x) direction (SW+), and in the backward ( x) direction (SW ). Note that Fig. 4 is for p-polarization. For s-polarization, and µ are switched and the horizontal axis is µ m /µ d and the vertical axis is m / d, and all discussion on SW+ and SW is unchanged. The fields inside and outside the metamaterial show that in the region of SW in Fig. 4, the phase velocities along the surface in the medium ( d,µ d ) and the NIM ( m < 0, µ m < 0) are in the same direction, but the Poynting vectors

Progress In Electromagnetics Research, PIER 5, 005 45 and the group velocities along the surface in the medium ( d,µ d ) and in NIM are in the opposite direction. 5. SURFACE PLASMON RESONANCE SENSOR Let us now consider the structure shown in Fig. 5. θ z θ R µ d µ 3 µ 3 metamaterial x Figure 5. Metamaterial with and µ is placed under the prism with and µ = and the dielectric material with 3 and µ 3 =. The surface plasmon propagation constant S between the medium and 3 is given by Eq. (8) or (9). The dip in the reflection coefficient should occur in the regions of SW+ and SW in Fig. 4 with m =,µ m = µ, and d = 3,µ d = µ 3. Furthermore, in order to have the plasmon resonance sensor, we need to have a total reflection requiring n >n 3 () and the dip occurs at the angle θ pl where n sin θ pl = S (3) Combining with Eq. (0), we need to have n 3 <S <n (4) This is shown in Fig. 6. The reflection coefficients as functions of incident angle θ are shown in Fig. 7. The results are for the following cases: Case A : =.5 0.00j µ = Case B : = 4.5 0.00j µ = (5) Case C : = 0.66 0.00j µ = d =0.3λ o Note that the plasmon does not exist in Case C, and there is no dip in reflection coefficient.

46Ishimaru, Jaruwatanadilok, and Kuga 3 µ m /µ d 0 * Case B - - Case A * * Case C -3-3 - - 0 3 m / d Figure 6. Surface plasmon resonance sensor =5, 3 =, µ = µ 3 =. Surface waves can exist in the shaded regions. Case A Case B 0.9 0.95 0.8 0.7 0.6 0.5 0.4 0.9 0.85 0.8 0.75 0.3 0.7 0. 0 0 40 60 80 Case C 0.65 0 0 40 60 80 0.8 0.6 0.4 0. 0 0 0 40 60 80 Figure 7. Reflection coefficient at A, B, and C.

Progress In Electromagnetics Research, PIER 5, 005 47 6. SURFACE PLASMON SENSOR WITH GAP Next we consider the structure in Fig. 8. θ θ µ d µ metamaterial gap 3 µ 3 x Figure 8. Structure with gap. Here, we use =5, =, µ = µ =. Figure 9 shows the cases A, B, and C where 3 and µ 3 are metamaterials shown in Eq. (5). Note that there is a sharp dip for Case A and B, but not for Case C. This configuration may be convenient to determine the characteristics of a metamaterial. 7. FREQUENCY DEPENDENCE AND EFFECTS OF LOSS It is known that metamaterials are often highly dispersive and lossy. Therefore, it is important to examine the frequency dependence of the surface plasmon sensor. However, the frequency characteristics of metamaterials depend on how the material is made. In particular, there appears to be no general formula for µ(ω), even though the Lorentz model and Drude model have been used [6]. Here we consider a narrow band approximation where ω = ω ω o ω o. Noting the group refractive index n g is given by n g = (nω), (6) ω we get, in narrow band approximation, n(ω) =n(ω o )+[n g (ω o ) n(ω o )] ω (7) ω o where, in general, both and n(ω o ) are n g (ω o ) are complex.

48 Ishimaru, Jaruwatanadilok, and Kuga Case A.005 Case B 0.9 0.8 0.995 0.7 0.99 0.6 0.985 0.5 0.98 0.4 0.975 0.3 0.97 0. 0 0 40 60 80 0.965 0 0 40 60 80 Case C 0.8 0.6 0.4 0. 0 0 0 40 60 80 Figure 9. Reflection coefficient as a function of incident angle in gap structure. Similarly, we can approximate and µ as ω (ω) =(ω o )+δ e ω o (8) ω µ(ω) =µ(ω o )+δ m ω o where δ e = ω o and δ m = µ ω o. We then get ωo ωo ω ω [ n g (ω o )=n(ω o ) + ( δe (ω o ) + δ )] m µ(ω o ) (9) Note that for NIM, n(ω o ), (ω o ), and µ(ω o ) are negative, but δ e,δ m, and n g are positive. As an example, we take Case A and let δ e = δ m = δ. Figure 0

Progress In Electromagnetics Research, PIER 5, 005 49 0.95 0.9 0.85 0.8 =0 0.75 =0.0 =0.00 0.7 68 69 70 7 7 Figure 0. coefficient. Effect of the frequency dependence to the reflection 0.9 0.8 0.7 0.6 0.5 Case () Case () Case (3) 0.4 66 67 68 69 70 7 7 73 74 Figure. The effect of loss. () =.5 0.00j, µ =, () =.5 0.00j, µ = 0.0j, (3) =.5 0.00j, µ = 0.00j.

50 Ishimaru, Jaruwatanadilok, and Kuga shows the variation of the dip of the reflection coefficient for a small change of δ. Next, we consider the effect of loss. For Case A, and µ are given in Eq. (5). We calculate and show the effect of loss in Fig.. Note that increased loss broadens the dip as expected. 8. CONCLUSIONS We present the use of metamaterials for plasmon resonance sensors at microwave frequencies. The conditions for the existence of forward and backward surface waves are clarified using the µ- diagram. Metamaterial surface plasmon sensors may be useful for remote sensing of material characteristics or for determining metamaterial characteristics. This paper deals with a surface plasmon sensor making use of isotropic and homogeneous metamaterials. However, there are some practical issues, including the questions of how to construct such metamaterials, and what are the effects of anisotropic characteristics. Since most metamaterials are known to be highly dispersive and lossy, the sensitivities need to be carefully studied. It is also important to investigate how to construct practical broadband, low-loss metamaterials. ACKNOWLEDGMENT This work was supported by the National Science Foundation (ECS- 990 8849). REFERENCES. Jorgenson, R. C. and S. S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance, Sensors and Actuators B, Vol., 3 0, 993.. Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and µ, Sov. Phy. Usp., Vol. 0, No. 4, 509 54, Jan. Feb. 968. 3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory and Techniques, Vol. 47, No., 075 084, November 999. 4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative

Progress In Electromagnetics Research, PIER 5, 005 5 permeability and permittivity, Phys. Rev. Lett., Vol. 84, No. 8, 484 487, May 000. 5. Pendry, J. B., Negative refraction makes a perfect lens, Phy. Rev. Lett., Vol. 85, No. 8, 3966 3969, October 000. 6. Ziolkowski, R. W. and E. Heyman, Wave propagation in media having negative permittivity and permeability, Phy. Rev. E, Vol. 64, No. 5, 05665, 00. 7. Ruppin, R., Surface polaritons of a left-handed medium, Phy. Lett. A, Vol. 77, 6 64, 000. 8. Caloz, C., A. Sanada, and T. Itoh, Surface plasmons at the interface between right-handed and left-handed D metamaterials, IEEE-APS InternationalSymposium, Vol. 3, Columbus, OH, June 003. 9. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 99. Akira Ishimaru is professor emeritus of electrical engineering at the University of Washington. He is the author of the books, Wave Propagation and Scattering in Random Media (Academic Press, 978; IEEE Press-Oxford University Press Classic Reissue, 997) and Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 99). He is a Fellow of the IEEE, the Optical Society of America, the Acoustical Society of America, and the Institute of Physics, United Kingdom. He is a member of the National Academy of Engineering. He is the recipient of the 999 IEEE Heinrich Hertz Medal and the 999 URSI Dellinger Gold Medal. In 000, he received the IEEE Third Millennium Medal. Sermsak Jaruwatanadilok received his B.E. degree from King Mongkut s Institute of Technology, Ladkrabang, Thailand in 994, M.S. degree from Texas A&M University, College Station, Texas, USA in 997, and Ph.D. degree from University of Washington, Seattle, USA in 003. He is now a research associate at the University of Washington, Seattle. His research interest lies in the area of remote sensing and waves in random media. Yasuo Kuga is a Professor of Electrical Engineering at the University of Washington. He received his B.S., M.S., and Ph.D. degrees from the University of Washington, Seattle in 977, 979, and 983, respectively. From 983 to 988, he was a Research Assistant Professor of Electrical Engineering at the University of Washington. From 988 to 99, he was an Assistant Professor of Electrical Engineering and Computer

5 Ishimaru, Jaruwatanadilok, and Kuga Science at The University of Michigan. Since 99, he is with the University of Washington. He was an Associate Editor of Radio Science (993 996) and IEEE Trans. Geoscience and Remote Sensing (996 000). He was elected to IEEE Fellow in 004. His research interests are in the areas of microwave and millimeter-wave remote sensing, high frequency devices and materials, and optics.