Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Similar documents
How do we describe motion?

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

4.1 Describing Motion

How do we describe motion?

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

How do we describe motion?

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?

How do we describe motion?

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

4.3 Conservation Laws in Astronomy

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc.

Today. Laws of Motion. Conservation Laws. Gravity. tides

Lecture Fall 2005 Astronomy 110 1

Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space.

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Where do objects get their energy?

Lecture: October 1, 2010

Column Statistics for: test1 Count: 108 Average: 33.3 Median: 33.0 Maximum: 49.0 Minimum: 12.0 Standard Deviation: 8.37

2.1 Patterns in the Night Sky

Today. Events. Energy. Gravity. Homework Due Next time. Practice Exam posted

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity

Announcements. HW #2 is online now at MasteringAstronomy.com. Due next Mon at 11pm. For today: finish reading chapter 4.

Classical mechanics: conservation laws and gravity

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

5. Universal Laws of Motion

Newton s Laws and the Nature of Matter

Announcements. True or False: When a rocket blasts off, it pushes off the ground in order to launch itself into the air.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today)

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-Feb-18. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

Newton's Laws. Before Isaac Newton

Basic Physics Content

13-Feb-19. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

In this chapter, you will consider the force of gravity:

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Classical mechanics: Newton s laws of motion

Astronomy 1 Winter 2011

The Acceleration of Gravity (g)

Chapter 4: Energy, Motion, Gravity. Enter Isaac Newton, who pretty much gave birth to classical physics

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Basics of Kepler and Newton. Orbits of the planets, moons,

Lecture 16. Gravitation

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Force, Friction & Gravity Notes

Kepler Galileo and Newton

Astronomy Picture of the Day

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

PHYS 101 Previous Exam Problems. Gravitation

Finding Extrasolar Planets. I

3. What type of force is the woman applying to cart in the illustration below?

First exam next Wednesday. Today in class Review: Motion, Gravity. Gravity and Orbits. Review: Motion. Newton s Laws of Motion. Gravity and Orbits

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion

Thursday is last Planetarium observing. Nighttime observing starts next week.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Gravity. The Universal Force

Midterm 2 PRS Questions

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy

7.4 Universal Gravitation

Lecture 8. Kepler's IInd: Angular Momentum

Chapter 10. Projectile and Satellite Motion

Chapter 6 Dynamics I: Motion Along a Line

Please turn on your clickers

Motion, Energy, and Gravity. Reminder to take out your clicker and turn it on!

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Gravitation and the Motion of the Planets

Isaac Newton & Gravity

Monday, October 10, 2011

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Study Guide Solutions

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Announce/Remind. Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back!

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

Earth in Space Chapter 1

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets. Chapter Four

Directed Reading A. Section: Gravity: A Force of Attraction. force of. THE EFFECTS OF GRAVITY ON MATTER. of.

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

Section 2: Newton s Laws of Motion (p. 145)

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Astronomy 104: Stellar Astronomy

1. Which of the following correctly lists our cosmic address from small to large?

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Who was Isaac Newton?

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Announcements. Atom Energy Levels

Light is a wave. Light is also a particle! 3/23/09

Uniform Circular Motion

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Transcription:

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1

4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different from weight? 2

How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time Example: speed of 10 m/s units of m s Velocity: Speed and direction Example: 10 m/s, due east Acceleration: Any change in velocity; units of speed/time (m/s 2 ) 3

All falling objects accelerate at the same rate (not counting friction of air resistance). On Earth, g 10 m/s 2 : speed increases 10 m/s with each second of falling. Acceleration of Gravity 4

Acceleration of Gravity (g) Galileo showed that g is the same for all falling objects, regardless of their mass. Apollo 15 demonstration Feather and Hammer Drop 5

Momentum and Force Momentum = mass velocity. A net force changes momentum, which generally means an acceleration (change in velocity). The rotational momentum of a spinning or orbiting object is known as angular momentum. 6

Thought Question Is a net force acting on each of the following? (Answer yes or no.) A car coming to a stop A bus speeding up An elevator moving up at constant speed A bicycle going around a curve A moon orbiting Jupiter 7

Thought Question Is a net force acting on each of the following? (Answer yes or no.) A car coming to a stop: Yes A bus speeding up: Yes An elevator moving up at constant speed: No A bicycle going around a curve: Yes A moon orbiting Jupiter: Yes 8

How is mass different from weight? Mass the amount of matter in an object Weight the force that acts on an object You are weightless in free-fall! 9

Thought Question On the Moon, A. your weight is the same; your mass is less. B. your weight is less; your mass is the same. C. your weight is more; your mass is the same. D. your weight is more; your mass is less. 10

Thought Question On the Moon, A. your weight is the same; your mass is less. B. your weight is less; your mass is the same. C. your weight is more; your mass is the same. D. your weight is more; your mass is less. 11

Why are astronauts weightless in space? There is gravity in space. Weightlessness is due to a constant state of free-fall. 12

What have we learned? How do we describe motion? Speed = distance/time Speed and direction => velocity Change in velocity => acceleration Momentum = mass velocity Force causes change in momentum, producing acceleration. 13

What have we learned? How is mass different from weight? Mass = quantity of matter Weight = force acting on mass Objects are weightless in free-fall. 14

4.2 Newton s Laws of Motion Our goals for learning: How did Newton change our view of the universe? What are Newton s three laws of motion? 15

How did Newton change our view of the universe? He realized the same physical laws that operate on Earth also operate in the heavens: one universe He discovered laws of motion and gravity. Much more: Experiments with light; first reflecting telescope, calculus Sir Isaac Newton (1642 1727) 16

What are Newton s three laws of motion? Newton s first law of motion: An object moves at constant velocity unless a net force acts to change its speed or direction. 17

Newton s second law of motion: Force = mass acceleration. 18

Newton s third law of motion: For every force, there is always an equal and opposite reaction force. 19

Thought Question Is the force that Earth exerts on you larger, smaller, or the same as the force you exert on it? A. Earth exerts a larger force on you. B. You exert a larger force on Earth. C. Earth and you exert equal and opposite forces on each other. 20

Thought Question Is the force that Earth exerts on you larger, smaller, or the same as the force you exert on it? A. Earth exerts a larger force on you. B. You exert a larger force on Earth. C. Earth and you exert equal and opposite forces on each other. 21

Thought Question A compact car and a large truck have a head-on collision. Are the following true or false? The force of the car on the truck is equal and opposite to the force of the truck on the car. The momentum transferred from the truck to the car is equal and opposite to the momentum transferred from the car to the truck. The change of velocity of the car is the same as the change of velocity of the truck. 22

Thought Question A compact car and a large truck have a head-on collision. Are the following true or false? The force of the car on the truck is equal and opposite to the force of the truck on the car. T The momentum transferred from the truck to the car is equal and opposite to the momentum transferred from the car to the truck. T The change of velocity of the car is the same as the change of velocity of the truck. F 23

What have we learned? How did Newton change our view of the universe? He discovered laws of motion and gravitation. He realized these same laws of physics were identical in the universe and on Earth. What are Newton s three laws of motion? 1. An object moves at constant velocity if no net force is acting. 2. Force = mass acceleration. 3. For every force, there is an equal and opposite reaction force. 24

4.3 Conservation Laws in Astronomy Our goals for learning: What keeps a planet rotating and orbiting the Sun? Where do objects get their energy? 25

Conservation of Momentum The total momentum of interacting objects cannot change unless an external force is acting on them. Interacting objects exchange momentum through equal and opposite forces. 26

What keeps a planet rotating and orbiting the Sun? 27

Conservation of Angular Momentum angular momentum = mass velocity radius The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it. Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely. 28

Angular momentum conservation also explains why objects rotate faster as they shrink in radius. 29

Where do objects get their energy? Energy makes matter move. Energy is conserved, but it can transfer from one object to another. change in form. 30

Basic Types of Energy Kinetic (motion) Radiative (light) Stored or potential Energy can change type but cannot be destroyed. 31

Thermal Energy: The collective kinetic energy of many particles (for example, in a rock, in air, in water) Thermal energy is related to temperature but it is NOT the same. Temperature is the average kinetic energy of the many particles in a substance. 32

Temperature Scales 33

Thermal energy is a measure of the total kinetic energy of all the particles in a substance. It therefore depends on both temperature AND density. Example: 34

Gravitational Potential Energy On Earth, it depends on an object s mass (m). the strength of gravity (g). the distance an object could potentially fall. 35

Gravitational Potential Energy In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts. A contracting cloud converts gravitational potential energy to thermal energy. 36

Mass-Energy Mass itself is a form of potential energy. E = mc 2 A small amount of mass can release a great deal of energy. Concentrated energy can spontaneously turn into particles (for example, in particle accelerators). 37

Conservation of Energy Energy can be neither created nor destroyed. It can change form or be exchanged between objects. The total energy content of the universe was determined in the Big Bang and remains the same today. 38

What have we learned? What keeps a planet rotating and orbiting the Sun? Conservation of angular momentum Where do objects get their energy? Conservation of energy: Energy cannot be created or destroyed but only transformed from one type to another. Energy comes in three basic types: kinetic, potential, and radiative. 39

4.4 The Force of Gravity Our goals for learning: What determines the strength of gravity? How does Newton s law of gravity extend Kepler s laws? How do gravity and energy together allow us to understand orbits? How does gravity cause tides? 40

What determines the strength of gravity? The Universal Law of Gravitation: 1. Every mass attracts every other mass. 2. Attraction is directly proportional to the product of their masses. 3. Attraction is inversely proportional to the square of the distance between their centers. 41

How does Newton s law of gravity extend Kepler s laws? Kepler s first two laws apply to all orbiting objects, not just planets. Ellipses are not the only orbital paths. Orbits can be: bound (ellipses) unbound parabola hyperbola 42

Newton generalized Kepler s third law: Newton s version of Kepler s third law: If a small object orbits a larger one and you measure the orbiting object s orbital period AND average orbital distance THEN you can calculate the mass of the larger object. Examples: Calculate the mass of the Sun from Earth s orbital period (1 year) and average distance (1 AU). Calculate the mass of Earth from orbital period and distance of a satellite. Calculate the mass of Jupiter from orbital period and distance of one of its moons. 43

Newton s version of Kepler s third law p 2 4¹ 2 G(M 1 M 2 ) a3 p = orbital period a = average orbital distance (between centers) (M 1 + M 2 ) = sum of object masses 44

How do gravity and energy together allow us to understand orbits? More gravitational energy; less kinetic energy Less gravitational energy; more kinetic energy Total orbital energy (gravitational + kinetic) stays constant if there is no external force. Orbits cannot change spontaneously. Total orbital energy stays constant. 45

Changing an Orbit So what can make an object gain or lose orbital energy? Friction or atmospheric drag A gravitational encounter 46

Escape Velocity If an object gains enough orbital energy, it may escape (change from a bound to unbound orbit). Escape velocity from Earth 11 km/s from sea level (about 40,000 km/hr). 47

Relationship Between Cannonball's Mass and Orbital Trajectory 48

Escape and orbital velocities don t depend on the mass of the cannonball. Relationship Between Cannonball's Mass and Orbital Trajectory 49

How does gravity cause tides? The Moon s gravity pulls harder on near side of Earth than on far side. The difference in the Moon s gravitational pull stretches Earth. 50

Tides and Phases Size of tides depends on the phase of the Moon. Tides 51

What have we learned? What determines the strength of gravity? Directly proportional to the product of the masses (M m) Inversely proportional to the square of the separation How does Newton s law of gravity extend Kepler s laws? Applies to other objects, not just planets Includes unbound orbit shapes: parabola, hyperbola Can be used to measure mass of orbiting systems 52

What have we learned? How do gravity and energy together allow us to understand orbits? A change in total energy is needed to change orbit. Add enough energy (escape velocity) and the object leaves. How does gravity cause tides? The Moon s gravity stretches Earth and its oceans. 53