Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Similar documents
Super-Kamiokande ~The Status of n Oscillation ~

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

UNO: Underground Nucleon Decay and Neutrino Observatory

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Spectrum of the Supernova Relic Neutrino Background

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Astroparticle physics

Fossil Records of Star Formation: John Beacom, The Ohio State University

GADZOOKS! project at Super-Kamiokande

Radio-chemical method

Gadolinium Doped Water Cherenkov Detectors

Recent results from Super-Kamiokande

Neutrino Oscillations

Supernova neutrinos and their implications for supernova physics

Recent Discoveries in Neutrino Physics

Neutrinos and Supernovae

The Hyper-Kamiokande project

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

KamLAND. Studying Neutrinos from Reactor

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Solar Neutrinos in Large Liquid Scintillator Detectors

Recent Nucleon Decay Results from Super-Kamiokande

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Supernova Neutrino Detectors: Current and Future. Kate Scholberg, Duke University June 24, 2005

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

KamLAND. Introduction Data Analysis First Results Implications Future

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Neutron background and possibility for shallow experiments

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Astrophysical Neutrino at HK

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Detection of supernova Neutrinos

( Some of the ) Lateset results from Super-Kamiokande

Neutrino Probes of Galactic and Extragalactic Supernovae

1 Introduction. 2 Nucleon Decay Searches

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Stellar Interior: Physical Processes

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Life of a High-Mass Stars

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Proton decay and neutrino astrophysics with the future LENA detector

Neutrino observatories

Neutrino Experiments with Reactors

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande.

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility

Neutrino oscillation physics potential of Hyper-Kamiokande

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Nuclear Astrophysics

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

The Hyper-Kamiodande Project A New Adventure in n Physics

Other Physics with Geo-Neutrino Detectors

1. Neutrino Oscillations

Neutrino Oscillations

Detectors for astroparticle physics

Stellar Explosions (ch. 21)

Solar Neutrino Oscillations

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Neutrino Experiments with Reactors

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

Neutrino Physics: Lecture 1

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Identifying the neutrino mass hierarchy with supernova neutrinos

Neutrino sources. Atmospheric neutrinos Solar neutrinos Supernova neutrinos High energy neutrino sources Cosmic neutrino background

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

Background study for solar neutrino measurement in Super Kamiokande

Supernova events and neutron stars

Ay 1 Lecture 8. Stellar Structure and the Sun

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

Metallicities in stars - what solar neutrinos can do

Neutrinos in Astrophysics and Cosmology

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

Neutrino Oscillation and CP violation

arxiv: v1 [physics.ins-det] 14 Jan 2016

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M.

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Analyzing Data. PHY310: Lecture 16. Road Map

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Dear Radioactive Ladies and Gentlemen,

XMASS: a large single-phase liquid-xenon detector

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Tsuyoshi Nakaya (Kyoto Univ.)

Conceptos generales de astrofísica

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

Diffuse SN Neutrino Background (DSNB)

Stars with Mⵙ go through two Red Giant Stages

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Transcription:

Searching for Supernova Relic Neutrinos Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Outline Introduction: A Brief History of Neutrinos Theory Supernova Neutrino Emission Supernova Relic Neutrinos Super-Kamiokande Detector Data Reduction Analysis and Results Conclusions and Future

Enter The Neutrino 1 9 1 0 s - 1 9 2 0 s : S t u d ie s o f n u c l e a r β d e c a y s N D id n o t a p p e a r t o c o n s e r v e e n e r g y! 1 N 2 n u c le i + ee le c tro n 1 9 3 0 : W o l fg a n g P a u l i p o s t u l a t e d N e u t r i n o s in o r d e r t o s a v e e n e r g y c o n s e r v a t io n N 1 N 2+ e- + ν I h a v e d o n e a t e r r ib le t h in g. I h a v e p o s t u l a t e d a p a rtic le th a t c a n n o t b e d e te c te d ν 1956: h a s n o c h a r g e, n o m a s s, v e r y f e e b l e in t e r a c t io n, j u s t a b it o f e n e r g y ν f in a l l y d is c o v e r e d b y C o w a n a n d R e in e s. U s e d n u c l e a r r e a c t o r a s s o u r c e o f n e u t r in o s. N o b e l p r iz e 1 9 9 5

In The Mine, But Looking At The Stars F ir s t s o la r n e u t r in o d e t e c t o r : H o m e s t a k e m in e, S. D a k o t a R a y D a v is, B r o o k h a v e n 1967 1998 6 1 5 t o n s o f C 2 C l4 ( c le a n in g f lu id! ) R a d io c h e m ic a l d e t e c t o r : νe + 37 C l 37 A r* + e G ood New s: F ir s t d is c o v e r y o f s o la r ν! Bad New s: F a r f e w e r t h a n a n t ic ip a t e d! -

Supernova Neutrinos: The Plot Thickens O n 2 3 -F e b -1 9 8 7, a b u rs t o f ν c a m e fro m S a n d u l e a k - 6 9 o 2 0 2 in L a r g e M a g. C l o u d. (n o w k n o w n a s S u p e rn o v a 1 9 8 7 a ) 1 9 ( o r 2 0 ) S N n e u t r in o s s e e n in t w o w a t e r C h e r e n k o v e x p e r im e n t s : 1 1 ( o r 1 2 ) a t K a m io k a N D E 8 a t th e c o m p e t in g IM B H u n d r e d s o f p a p e r s w r i t t e n a n a l y s in g th e s e f e w n e u t r in o s! B e tw e e n s o la r a n d s u p e rn o v a ν d e t e c t io n s, th e f ie ld o f n e u t r in o a s t r o n o m y w a s b o r n! In 2 0 0 2, R a y D a v is a n d M a s a t o s h i K o s h ib a s h a r e d N o b e l P r iz e f o r th is a c c o m p l is h m e n t ( a l o n g w it h d is c o v e r y o f x - r a y a s t r o n o m y ).

Supernova Progenitors Main Sequence H core

Supernova Progenitors Main Sequence H core Red Giant He core + H shell

Supernova Progenitors Main Sequence Supergiant H core Red Giant C & O core He & H shells He core + H shell

Supernova Progenitors Main Sequence Supergiant H core Red Giant m > 8 M? C & O core He & H shells He core + H shell

Supernova Progenitors Main Sequence Accreting White Dwarf Supergiant H core Red Giant m > 8 M? C & O core He & H shells He core + H shell

Supernova Progenitors Main Sequence Accreting White Dwarf Carbon deflagration supernova Supergiant H core Red Giant m > 8 M? C & O core He & H shells He core + H shell

Supernova Progenitors Main Sequence Accreting White Dwarf Carbon deflagration supernova Supergiant H core Red Giant m > 8 M? C & O core He & H shells He core + H shell Onion Shells (H,He,C,O,Ne,Si,Fe)

Supernova Progenitors Main Sequence Accreting White Dwarf Carbon deflagration supernova Supergiant H core Red Giant m > 8 M? C & O core He & H shells He core + H shell Onion Shells (H,He,C,O,Ne,Si,Fe) Core Collapse!

Supernova Classification Classify by spectral lines : Got Hydrogen?

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? NO Type I Supernova

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? NO Type I Supernova (Got Silicon?)

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? S NO E Y Type I Supernova (Got Silicon?)N O Type Ia Supernova Got Helium?

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? S NO E Y Type I Supernova (Got Silicon?)N O Type Ib Supernova Type Ia Supernova Got Helium? S YE NO Type Ic Supernova

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? S NO E Y Type I Supernova (Got Silicon?)N O NOTE: Spectral class Mechanism Type Ib Supernova Type Ia Supernova Got Helium? S YE NO Type Ic Supernova

Supernova Classification Classify by spectral lines : Type II Supernova YES Got Hydrogen? S NO E Y Type I Supernova (Got Silicon?)N O NOTE: Spectral class Mechanism Type Ib Supernova Type Ia Supernova Got Helium? S YE NO Type Ic Supernova

Supernova Neutrino Emission: Start of the Collapse Electrons captured on nuclei produce e via: e + A(N,Z) e + A(N+1,Z-1) Mean free path of neutrinos > core size Neutrinos escape promptly

Supernova Neutrino Emission: Neutrino Trapping Core density increases as collapse continues Mean free path of neutrinos shrinks w/ increasing density trapped by coherent scattering off nuclei: + A(N,Z) + A(N,Z)

Supernova Neutrino Emission: Shock Wave Formation Inner core reaches nuclear densities Neutron degeneracy halts gravitation attraction Inner core rebounds, causing shock wave Shock wave propagates through outer core -sphere larger; still emitted from outer core

Supernova Neutrino Emission: Neutronization Burst Shock slows infall and dissociates nucleons Shock loses 8 MeV per dissociated nucleon Electrons captured on dis. protons produce e via: e + p e + n

Supernova Neutrino Emission: Neutrino Cooling Egrav Etherm (~1053 erg) T 40 MeV Proto-neutron star cools: e + p e + n e+ + n e + p e + e+ + e±+n e± + N + + N+N N + N + + + e±) + Neutron star (or black hole?) left behind

Supernova Neutrino Energy Spectra µ and τ do not experience CC smaller -sphere higher E More n than p in proto-neutron star e decouples before e e e x K.Takahashi, M.Watanabe & K.Sato, Phys. Lett. B 510, 189 Average Energies: < E e > = 13 MeV < E e > = 16 MeV < E x > = 23 MeV

Supernovae Relic Neutrinos To date, only SN burst seen on 23-Feb-1987 (Sanduleak -69o 202) Diffuse backgrnd of SN relic should exist! (Called 'SRN') All 6 types of emitted in SN BUT we only search for e Inverse x-section dominant: e + p e+ + n (Ee = E 1.3 MeV) T.Totani & K.Sato, Astropart. Phys. 3, 367

Theoretical Models Solar 8B Solar hep Predictions generated from SN model, cosmology, etc. SRN detection provides info on SN rate, SFR, galaxy ev. Low thresh probe high Z Flux predictions: Atmospheric e FSRN = 2-54 e cm-2 s-1 SRN predictions Population synthesis (Totani et al., 1996) Constant SN rate (Totani et al., 1996) Cosmic gas infall (Malaney, 1997) Cosmic chemical evolution (Hartmann et al., 1997) Heavy metal abundance (Kaplinghat et al., 2000) LMA oscillation (Ando et al., 2002)

The Super-Kamiokande Detector 50,000 ton water Cherenkov detector Located 1,000 m underground 11,146 inward-facing 50 cm PMTs view fiducial volume (22,500 t) 1,885 outward-facing 20 cm PMTs monitor incoming events 5 MeV energy threshold

Detection Method Solar: e + e e + e SN: e + p e+ + n - - Ee=35 MeV

The LINAC Calibration System Single mono-energetic electrons injected into SK Momentum can be tuned between 5.1 and 16.3 MeV/c Position of LINAC electrons known to within few mm LINAC used to calibrate absolute energy scale, & detector resolutions (angular, vertex and energy)

Energy Calibration for E > 18 MeV Use µ-e decay for E-scale µ+ gives basic Michel spec. µ can be captured on 16O Ave. µ-e event has E = 37 MeV Systematics: 1.23% ± 0.24%

SRN Data Reduction We cannot 'tag' SRN events! Understanding BG vital! Reducible µ induced spallation Atmospheric µ Nuclear de-excitation γ Solar neutrinos Irreducible Atmospheric e Atm. µ µ Decay-e [Muon is ''invisible''] Strategy: Remove 'reducible' BG with cuts Differentiate 'irreducible' BG from SRN signal by shape

Spallation Cut Cosmic ray µ spall 16O nuclei emit β particles Eβ = 3-21 MeV ; τβ > 8.5 msec Apply spallation cut to data w/ E < 34 MeV (due to Eres of SK) Cut all events with T < 0.15s. Likelihood func. uses T & L to cut long-lived spallation Ability to remove spallation sets lower threshold (18 MeV)

Sub-Event Cut Cut designed to remove µ with: decay electron pµ < 350 MeV/c µ created from low energy atmospheric Search for decay electron in same event (two timing peaks) 34% of µ eliminated parent muon

Cherenkov Angle Cut: Basic Idea Remaining µ tagged by Cherenkov angle Look for a collapsed ring: Cos(θC) = 1 / (n ) electron muon

Cherenkov Angle Cut: Reconstruction Method B R A C 2 R = sin(θopen)

Cherenkov Angle Cut: Electron Reconstruction Peak expected at ~42o (Ee = 59 MeV) 44.08o

Cherenkov Angle Cut: Muon Reconstruction Peak expected at < 42o (Eµ = 68 MeV) 33.07o

Cherenkov Angle Cut: Cut Results Cut events w/ θc < 38o to remove > 97% of µ Cut events w/ θc > 50o to remove nuclear de-excitation events Data Monte Carlo

Cherenkov Angle Cut: Multi- Reconstruction Peak near 90o (E = 20 MeV)

Solar Direction Cut: Motivation Solar neutrinos: created by nuclear fusion in the Sun 4p 4He + 2 e+ + 2 e Flux & spectra calculated by the Standard Solar Model Flux: [Units are (10 pp pep hep 7 Be 8 B 10 cm 2 sec -1)] 5.96 (1.00±0.01) 1.40x10-2 (1.00±0.015) 9.3x10-7 (1.00±???) 4.82x10-1 (1.00±0.10) 5.05x10-4 (1.00 +0.20 0.16) http://www.sns.ias.edu/~jnb

Solar Neutrino Detection e θ ν 8 B flux : 2.35 ± 0.02 ± 0.08 [x 106 /cm2/sec] +0.016 0.465 ±0.005-0.015 x SSM 22,385 solar events (14.5 events/day)

Solar Direction Cut 18 MeV threshold is below hep cut-off SSM predicts 1.06 events Potential contamination from 8B due to smearing Remove all events that point back to 30o of Sun AND have E < 34 MeV E = 18 34 MeV

Reduction Summary 1602 1602events events Before spa. cut (E = 18 82 Mev) After spallation cut (E < 34 MeV) 992 992events events 828 828events events After sub-event cut 278 278events events 271 271events events After θc cut After solar cut (E < 34 MeV)

Reduction Summary (cont.) Final Efficiencies For E 34 MeV, ε = 47% ± 0.4% For E > 34 MeV, ε = 79% ± 0.5%

Final Data Sample

Signal & BG Shapes: Monte Carlo SRN Signal: Decay-e: Atm. e: Signal falls sharply w/ inc. energy; BG shape rises Use shape difference to extract SRN signal

Fitting the Final Data 16 χ2 = Σ l=1 [(α Al) + (β Bl) + (γ Cl) - Nl]2 σ stat2 + σ sys2

Fitting the Final Data 16 χ2 = Σ l=1 Total B.G. + 90% C.L. SRN limit [(α Al) + (β Bl) + (γ Cl) - Nl]2 σ stat2 + σ sys2 Total background (Atm. + decay e) Decay electrons Atmospheric e

Efficiency-Corrected Data Ni 365 days Ni' = ε(ei) τ Total B.G. + 90% C.L. SRN limit Total background (Atm. + decay e) Decay electrons Atmospheric e

Background Event Rates Michel Electrons Best fit to data: Atmospheric ( e) 174 ± 16 events Expected from MC: 145 ± 43 events Best fit to data: 88 ± 12 events Expected from MC: 75 ± 23 events Expected backgrounds fit data well! Best fit to α (# SRN events) is ZERO for all six models.

Flux Calculation Use 90% C.L. limit on α to get full spectrum flux limits: Where: F= α90 Np τ f(e ) σ(e ) ε(e ) de Np = # of free protons in SK = 1.5 1033 τ = detector livetime = 1496 days = 1.29 108 seconds f(e ) = normalized SRN spectrum shape function σ(e ) = cross section = 9.52 10-44 Ee pe Integral runs from E = 19.3 MeV to 83.3 MeV

SRN Search Results Theoretical SK SRN Model Rate Limit <3.2 Population Synthesis Evts / 22.5 kton yr <2.8 Cosmic Gas Infall Evts / 22.5 kton yr <3.3 Cosmic Chemical Evolution Evts / 22.5 kton yr <3.0 Heavy Metal Abundance Evts / 22.5 kton yr <3.4 Constant SN Rate Evts / 22.5 kton yr <3.5 LMA Neutrino Oscillation Evts / 22.5 kton yr SK SRN Flux Limit Predicted SRN Flux νe / cm² sec νe / cm² sec <32 5.4 < 130 44 νe / cm² sec νe / cm² sec <25 8.3 νe / cm² sec νe / cm² sec <29 <54 νe / cm² sec νe / cm² sec <20 52 νe / cm² sec νe / cm² sec <31 11 νe / cm² sec νe / cm² sec

SK Flux Limits vs. Theoretical Predictions

Constant SN Model SRN flux scales with SN rate 90% C.L. limit on flux 90% C.L. limit on SN rate Prediction of 52 e cm-2 sec-1 corresponds to SN rate of 1.6 103 SN year-1 Mpc-3 (based on 16O abundance) SK limit of 20 e cm-2 sec-1 corresponds to SN rate limit of 6.2 102 SN year-1 Mpc-3 TOO LOW! Previous best limit (Kam-II) was 780 e cm-2 sec-1 SK limit is better by factor of 39!

Model-Insensitive Limit Full spectrum flux limits have strong model dependence, based on spectrum in low energy regions. Remove model dependence and get flux in directly observable region (E > 19.3 MeV): Finsen. = F 19.3 MeV f(e ) de f(e ) de 0 < 1.2 e cm-2 sec-1 For all models, this limit is same: Compare with previous limit: < 226 e cm-2 sec-1 [From Kamiokande-II, see W. Zhang et al. Phys. Rev. Lett. 61, 385]

Model-Insensitive Results Theoretical SRN Flux Limit Predicted SRN Flux (E >19.3 MeV) (E >19.3 MeV) Model <1.2 0.41 Population νe / cm² sec νe / cm² sec Synthesis <1.2 0.2 Cosmic νe / cm² sec νe / cm² sec Gas Infall <1.2 0.39 Cosmic Chemical νe / cm² sec νe / cm² sec Evolution <1.2 <2.2 Heavy Metal νe / cm² sec νe / cm² sec Abundance <1.2 3.1 Constant νe / cm² sec νe / cm² sec SN Rate <1.2 0.43 LMA Neutrino νe / cm² sec νe / cm² sec Oscillation

Model-Insensitive Results vs. Flux Predictions

Other Experiments KamLAND Lq. Scintillator (408 t fid) detector 1.8 MeV threshold After inverse : n + p d + γ (Εγ = 2.2 MeV) SNO By searching for the delayed γ, virtually all BG can be removed Threshold can be set at ~10 MeV (below which reactor dominate) Expected event rate is 0.1 ev/year due to small fiducial volume 1 kt heavy water w/ salt added With D2O: n + d 3H + γ (Ε = 6.3 MeV) With NaCl: n + 35Cl 36Cl + γ = 8.6 MeV) (Ε Search for delayed γ after an e+ Event rate 0.03 ev/yr for thresh. of E > 10 MeV

Possible Upgrade for SK? Neutron detection in SK via Gadolinium? Gd has large x-section 100 t (0.2%) in SK to catch > 90% n Capture 8 MeV cascade Above 12 MeV thresh. ~2 SRN/year expected First SRN discovery??

Water Cherenkov: The Next Generation DUSEL Hyper-Kamiokande 650 kton total volume 440 kton fiducial volume (= 20 SK) sensitivity (exposure)1/2 First approximation: Detection within 3 yrs If Gd works in SK, scale it to larger detectors May see ~40 SRN/yr measure E spectrum? 1,000 kton total volume 540 kton fiducial volume (= 24 SK) Current plans call for depth of 1400 1900 m.w.e Too shallow for SRN search! Depth might not pose a problem with Gd-enriched Hyper-K HK may see ~50 SRN / yr Neutrino cosmology??

Supernova Relic Neutrinos: A Summary SRN signal would manifest as distortion of Michel spectrum Above Ee = 18 MeV, no distortion seen flux limits can be set The Super-Kamiokande flux limits on the SRN are 1-2 orders of magnitude better than previous limits Some SRN models can be constrained or rejected An increase in sensitivity of factor 3-6 is needed to probe all models Future experiments (DUSEL, Hyper-Kamiokande) may be able to observe SRN due to higher statistics New methods, such as enhancing Super-Kamiokande with Gd, have been proposed to detect the SRN