Modern Physics notes Spring 2006 Paul Fendley Lecture 35

Similar documents
Modern Physics notes Spring 2005 Paul Fendley Lecture 35

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII

Modern Physics notes Paul Fendley Lecture 34. Born, chapter III (most of which should be review for you), chapter VII

General Relativity. on the frame of reference!

Lecture 10: General Relativity I

Scott Hughes 12 May Massachusetts Institute of Technology Department of Physics Spring 2005

General relativity, 3

Lecture: Principle of Equivalence

General Relativity ASTR 2110 Sarazin. Einstein s Equation

Astronomy 421. Lecture 24: Black Holes

Gravity and Spacetime: Why do things fall?

Black Holes -Chapter 21

GENERAL RELATIVITY. The presence of matter affects 4-space.

Chapter S3 Spacetime and Gravity. Agenda. Distinguishing Crackpots

Physics. Special Relativity

Accelerated Observers

Modern Physics notes Spring 2005 Paul Fendley Lecture 37

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

Cosmology - How the Universe Came to Be. PLATO: Cosmology

Einstein Toolkit Workshop. Joshua Faber Apr

Relativistic Boats: an explanation of special relativity. Brianna Thorpe, Dr. Michael Dugger

Lecture 10: General Relativity I

Modern Physics Part 2: Special Relativity

Lecture 18 Vacuum, General Relativity

Chapter S3 Spacetime and Gravity Pearson Education, Inc.

Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path.

1 Introduction to general relativity

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Review Special Relativity. February 3, Absolutes of Relativity. Key Ideas of Special Relativity. Path of Ball in a Moving Train

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

PHSC 1053: Astronomy Relativity

16. Einstein and General Relativistic Spacetimes

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

Elements of Physics II

The result is; distances are contracted in the direction of motion.

Physics 114A Introduction to Mechanics (without calculus)

Consequences of special relativity.

General Relativity: The Equivalence Principle and Spacetime Curvature

Space and Time Before Einstein. The Problem with Light. Admin. 11/2/17. Key Concepts: Lecture 28: Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently.

Consequences of special relativity.

6 General Relativity. Today, we are going to talk about gravity as described by Einstein s general theory of relativity.

May bring 1 sheet of paper with notes!! Both sides!! Printed/handwritten/whatever.. I don t really care

Introduction to General Relativity

The principle of equivalence and its consequences.

Modern Physics notes Spring 2007 Paul Fendley Lecture 27

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

Lecture 21: General Relativity Readings: Section 24-2

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October

Postulates of Special Relativity

Curved Spacetime... A brief introduction

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Special and General Relativity based on the Physical Meaning of the Spacetime Interval

8. The Expanding Universe, Revisited

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Class 5: Equivalence Principle

Basics of Special Relativity

Clock synchronization, a universal light speed, and the terrestrial redshift experiment

Physics 225 Relativity and Math Applications. Fall Unit 7 The 4-vectors of Dynamics

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

Astronomy 182: Origin and Evolution of the Universe

Lecture Outline Chapter 29. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

ASTRONAUT PUSHES SPACECRAFT

Correct Resolution of the Twin Paradox

Special Relativity: Derivations

Experimental Values of Lorentz Transformations of Mass and Time

Chapter 34: Spacetime and General Relativity

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

Rotational Motion and the Law of Gravity 1

Today in Astronomy 102: Einstein studies gravity

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

The Foundations of Special Relativity

Introduction: Special Relativity

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Today in Astronomy 102: relativity, continued

Lecture 8 : Special Theory of Relativity

Fig. 1. On a sphere, geodesics are simply great circles (minimum distance). From

A873: Cosmology Course Notes. II. General Relativity

Limitations of Newtonian Physics

Physics 8 Wednesday, October 14, 2015

MOTION IN TWO OR THREE DIMENSIONS

Curved Spacetime I. Dr. Naylor

Special Relativity: What Time is it?

Lecture 9: Schwarzschild solution

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

going vertically down, L 2 going horizontal. Observer O' outside the lift. Cut the lift wire lift accelerates wrt

2 General Relativity. 2.1 Curved 2D and 3D space

Physics 11b Lecture #24. Quantum Mechanics

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Special relativity, 3. How big is gamma? The Lorentz transformations depend on the factor γ =

Astronomy 122 Outline

Lecture 23 (Gravitation, Potential Energy and Gauss s Law; Kepler s Laws) Physics Spring 2017 Douglas Fields

Chapter 5 Lecture Notes

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F.

Bicycles and Stability

Lecture: Lorentz Invariant Dynamics

Tech Notes 4 and 5. Let s prove that invariance of the spacetime interval the hard way. Suppose we begin with the equation

Transcription:

Modern Physics notes Spring 2006 Paul Fendley fendley@virginia.edu Lecture 35 Gravity and clocks Curved spacetime Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks on General Relativity Gravity affects clocks An experiment to test the effect of gravity on clocks was done in the early 60s by Pound and Rebka in a tower 20 feet from where my office was as a graduate student. First consider light shined downward in a freely falling elevator of height h. Inside the elevator, we re a happy inertial frame. We say it takes time t = h/c to hit the bottom. We also say that there s no Doppler shift of the frequency of the light. But how does this look from the ground? Say the light beam was emitted just as the elevator was released into free fall (i.e. at zero velocity). By the time the light hits the bottom, the elevator has accelerated to some velocity v. Since light travels so fast, the elevator isn t traveling very fast when the light hits the bottom, so v is pretty small, and we can use non-relativistic formulas for this (but not the light!). We thus simply have v = gt = gh/c. Now let s see what this does to the frequency of the light. We know that even without special relativity, observers moving at different velocities measure different frequencies. (This is the reason the pitch of an ambulance changes as it passes you it doesn t change if you re on the ambulance). This is called the Doppler shift, and for small relative velocity v it is easy to show that the frequency shifts from f to f(1 + v/c) (it goes up heading toward you, down away from you). There are relativistic corrections, but these are negligible here. Now back to our experiment. In the freely-falling elevator, we re inertial and measure the same frequency f at top and bottom. Now to the earth frame. When the light beam is emitted, the elevator is at rest, so earth and elevator agree the frequency is f. But when it hits the bottom, the elevator is moving at velocity v = gh/c with respect to the earth, so earth and 1

elevator must measure different frequencies. In the elevator, we know that the frequency is still f, so on the ground the frequency f = f(1 + v/c) = f(1 + gh/c 2 ) On the earth, we interpret this as meaning that not only does gravity bend light, but changes its frequency as well. If you start the light beam at the bottom, then the frequency measured on earth decreases it is shifted to the red. Thus light escaping from a very massive star undergoes a gravitational red shift. This can be observed as well, by measuring the spectral lines from these stars and then comparing to those on earth. but Pound and Rebka measured this effect directly in the tower by my office. Note that with the 20 m tower in a four-story building, this requires measuring a variation in frequency to about 1 part in 10 15. Now, using atomic clocks, this effect is easily measured. So now forget the elevator we ve shown that light in a gravitational field shifts its frequency. This means that clocks at different altitudes measure time differently in the presence of gravity! This is like time dilation, except here nothing needs to be moving the gravitational field does it. The time between ticks t is 1/f, so t sat t earth = f earth f sat (1 + gh/c 2 ) for a satellite at height h. The earth measures a shorter time between ticks than does the satellite. This means we on earth see the clock on the satellite as running faster (I said this incorrectly in class). The standard clock in Boulder, CO (5400 feet) runs 6 microseconds a year faster than the clock at sea level in Greenwich, England. (Atomic clocks have an accuracy of about a microsecond a year.) There is even a practical application of this result: the GPS consists of satellites in orbit with atomic clocks. Your GPS device gets signals from multiple satellites, each encoded with the information of what time and at what position the signal was sent. Since we know the speed of light, you can then figure out your exact position if there are at least three satellites. The speed of light is about one foot per nanosecond, so an error of one nanosecond is about one foot. On the homework, you ll work out by how much the clocks on the satellite change relative to the earth every day. The time you get from the clock thus must be corrected to compensate for this. It also must be corrected for the time dilation due to special relativity (the motion of the satellite they go around the earth every twelve hours). Spacetime is curved So light is bent by gravity, and clocks at different altitudes run at different speeds. How do we generalize Lorentz transformations to account for frames accelerating with respect to each 2

other, or, equivalently, in a gravitational field? The whole story is called general relativity, and to really quantitatively understand what s going on requires a fair amount of mathematical sophistication. The area of math involved is called differential geometry, and what it involves is understanding how to do calculus on surfaces which are curved, such as the surface of a sphere. So why do we need to understand calculus on surfaces which are not flat? The fact that light curves means that the quickest way of getting from one point to another in a gravitational field is not a straight line! Thus if there is gravity present, we can t use rigid rods to measure a distance or a single clock to measure a time interval the way we did in special relativity. Spacetime itself is curved. Why is space time curved? We can apply these ideas to a merry-go-round in outer space. In the frame of the merry-go-round, you feel a centrifugal force outward: it s mω 2 R. If you don t know about the motor of the merry-go-round, you can t distinguish that from the possibility is that you re in a horizontal gravitational field of strength ω 2 R pointing way from the merrygo-round (say coming from some enormous asteroid). This is analogous to, but reversed from, free fall. Both frames agree that the other accelerating with respect to them. One frame in each case says there s gravity. But here it s the merry-go-round which says there s horizontal gravity (the centrifugal force). With the elevator in free fall, they say there s no gravity, while the ground says there is. Now let s measure the ratio of the circumference of the merry go round. On the ground (here the inertial frame), we place many short sticks of fixed length L around the edge of the merry go round, and radially from the center. Since the sticks are straight, this gives a slight error, but as we increase the number of sticks, the error decreases. Denote N edge the number of sticks around the edge, and N radial the number of sticks pointing radially. As we use a larger number of shorter sticks, we find of course N edge N radial = N edgel N radial L = C R = 2π Since the ground is an inertial frame, we interpret this as meaning that the ratio of the circumference C to the radius R is 2π as Euclidean geometry says. Now let s interpret this from the merry-go-round. Because each point on the edge is moving with some speed v = ωr with respect to the sticks on the ground, people on the merry-go-round see each stick of length L contracting, so that they measure L = L/γ. The radial sticks, however, are still measured at the same length L, because the motion is perpendicular to them. The merry-go-round of course agree on the number of radial sticks N radial and the number of sticks N edge around the circumference. What they do not agree on is the length of the circumference. They would say that the circumference is C = N edge L, so that C = C/γ. Comparing with before. 2π = N edge N radial = N edgel N radial L = C R γ Thus on the merry-go-round, we have for a circle C = 2πγR. This is not Euclidean geometry! But from the equivalence principle we know that this the merry-go-round can be interpreted 3

as a frame at rest in a gravitational field. Thus gravity bends space. You can come up with arguments like this for time as well. This means that in the presence of gravity, spacetime is curved! As no doubt you know, once you re on a curved space like a sphere, measuring things gets trickier. For example, if I draw a circle on the surface of a sphere, it s obvious that C 2πR if we define all distances to remain on the sphere. The Pythagorean theorem fails as well. First, let me give a more precise definition of what curved is. Take 12 equal-length rods, and arrange them in a hexagon with spokes. If you can do this on some surface, we say that the surface is flat at this point. But on say on the top of a mountain, one rod is too long. That s called positive curvature. But on a saddle, one of the rods isn t long enough. That s called negative curvature. So how do we quantify this? As I said, to really do this right requires a lot of math. But some useful facts from special relativity show at least how to set things up. We learned there that already things are complicated: length contraction and time dilation occur even without acclerating frames. But we did learn the interval is the same in any frame. Thus without gravity, we can say that is the distance between two events in spacetime. What this means is that for two space like events, i is the distance between the two events in the frame where they are simultaneous. For two timelike events, is the time interval between the two events in a frame where the events are at the same place (i.e. the rest frame). In special relativity, is like a distance, except for the funny minus sign. Say that two events are close together in space so that dt = t 2 t 1 and d x = x 2 x 1. We say that the distance d between two events close together in space time is d = 3 c 2 (t 2 t 1 ) 2 (x 2 x 1 ) 2 (y 2 y 1 ) 2 (z 2 z 1 ) 2 = c2 (dt) 2 where dx 2 = dy, etc. We say that this spacetime (no gravitational fields) is flat. Roughly speaking, it means that the coefficients of the terms on the right-hand-side do not depend on space or time. Note that this is basically the Pythagorean theorem with minus signs. i=1 dx 2 i So this sounds horribly complicated. But here s the rule. Even on curved surfaces, there is still a notion of shortest path. For example, on the earth, the shortest path follows great circles. To get from here to Korea, you fly over the Arctic Ocean and Siberia. (Really!) A great circle is the edge of a disc slicing the earth in half. To measure the shortest distance in a curved spacetime, there is a formula for d but now where the coefficients depend on space and maybe time too. To write down a nice equation, let x 0 = ct, so dx 0 = cdt d = 3 3 g µν (t, x)dx µ dx ν µ=0 ν=0 4

where the 16 functions g µν are called the metric. If there is no curvature (i.e. no gravity) then we have g 00 = 1, g 11 = g 22 = g 33 = 1, and g µν = 0 if µ ν. Now we can determine the shortest path simply by finding for all paths between the two events: the one with the smallest is the shortest one. This path is called a geodesic. (I have no idea why Born calls it a geodetic.) Sorry for the mathematical diversion. Here s what it has to do with gravity. An object in free fall follows geodesics, i.e. the shortest path in spacetime. By free fall we mean in the absence of all external fields. Thus even in the presence of gravity, free particles follow the shortest path in spacetime! When gravity is present, these paths seem curved to a observer who feels gravity s force. (i.e. some one not in free fall). In special relativity, the shortest paths are straight lines. Once the coefficients in the above equation for d (the metric) start to depend on space and time, this is no longer true. To reiterate: we have said if there is no gravity, then everything reduces to special relativity: spacetime is flat. But of course there is only no gravity if there is no matter: a world of light only is not particularly interesting. When there is gravity, then light no longer travels in straight lines. The more matter, the more gravity, and the more curving things do. 5