Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Similar documents
Condensed Matter Physics in the City London, June 20, 2012

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Holography of compressible quantum states

Quantum entanglement and the phases of matter

Quantum phase transitions in condensed matter

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Quantum phase transitions in condensed matter physics, with connections to string theory

Strange metals and gauge-gravity duality

Theory of Quantum Matter: from Quantum Fields to Strings

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Metals without quasiparticles

Quantum criticality of Fermi surfaces

General relativity and the cuprates

The quantum phases of matter and gauge-gravity duality

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

3. Quantum matter without quasiparticles

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Quantum phase transitions in condensed matter

Which Spin Liquid Is It?

Subir Sachdev Research Accomplishments

Quantum disordering magnetic order in insulators, metals, and superconductors

A quantum dimer model for the pseudogap metal

J. McGreevy, arxiv Wednesday, April 18, 2012

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories

Quantum mechanics without particles

Emergent gauge fields and the high temperature superconductors

Quantum Phase Transitions

Small and large Fermi surfaces in metals with local moments

Quantum phase transitions of insulators, superconductors and metals in two dimensions

2. Spin liquids and valence bond solids

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013

The Superfluid-Insulator transition

Exotic phases of the Kondo lattice, and holography

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Holographic Branching and Entanglement Renormalization

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

Deconfined Quantum Critical Points

Quantum phase transitions of insulators, superconductors and metals in two dimensions

SYK models and black holes

AdS/CFT and condensed matter

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Saturday, April 3, 2010

The underdoped cuprates as fractionalized Fermi liquids (FL*)

Quantum matter and gauge-gravity duality

Quantum Criticality and Black Holes

Emergent light and the high temperature superconductors

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum Entanglement and the Geometry of Spacetime

Disordered metals without quasiparticles, and charged black holes

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum spin systems - models and computational methods

Quantum phase transitions and the Luttinger theorem.

Entanglement Entropy for Disjoint Intervals in AdS/CFT

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Quantum Information and Entanglement in Holographic Theories

Quantum criticality of Fermi surfaces in two dimensions

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Holographic Entanglement Entropy. (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv: , arxiv: )

AdS/CFT Correspondence and Entanglement Entropy

Entanglement Entropy and AdS/CFT

Topological order in the pseudogap metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

NEW HORIZONS IN QUANTUM MATTER

Entanglement, geometry and the Ryu Takayanagi formula

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Properties of monopole operators in 3d gauge theories

Introduction to AdS/CFT

Spin liquids in frustrated magnets

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Talk online: sachdev.physics.harvard.edu

Spin liquids on the triangular lattice

Spinon magnetic resonance. Oleg Starykh, University of Utah

Properties of entropy in holographic theories

The phase diagrams of the high temperature superconductors

Overview: Entanglement Entropy

Perimeter Institute January 19, Subir Sachdev

Lecture 2: Deconfined quantum criticality

Non-relativistic AdS/CFT

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Theory of the Nernst effect near the superfluid-insulator transition

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

Emergent Quantum Criticality

Quantum phase transitions in Mott insulators and d-wave superconductors

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Topological order in insulators and metals

arxiv: v1 [hep-th] 26 Sep 2017

Quantum matter and gauge-gravity duality

Applications of AdS/CFT correspondence to cold atom physics

Transcription:

Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565 sachdev.physics.harvard.edu HARVARD

Max Metlitski Liza Huijse Brian Swingle Debanjan Chowdhury Matthias Punk Erez Berg Junhyun Lee HARVARD

Max Metlitski Liza Huijse Brian Swingle Debanjan Chowdhury Posters Matthias Punk Erez Berg Junhyun Lee HARVARD

Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets Compressible quantum matter Strange metals, Bose metals

Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter topological field theory Graphene, ultracold atoms, antiferromagnets Compressible quantum matter Strange metals, Bose metals

Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets Compressible quantum matter Strange metals, Bose metals topological field theory conformal field theory

Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold atoms, antiferromagnets Compressible quantum matter Strange metals, Bose metals topological field theory conformal field theory?

Entanglement entropy A B i ) Ground state of entire system, = ih A =Tr B = density matrix of region A Entanglement entropy S E = Tr ( A ln A ) M. Srednicki, Phys. Rev. Lett. 71, 666 (1993)

Gapped quantum matter

Entanglement entropy of a band insulator B A P S E = ap b exp( cp ) where P is the surface area (perimeter) of the boundary between A and B.

Kagome antiferromagnet H = J ij S i S j

Kagome antiferromagnet: Z2 spin liquid non-collinear Néel state s c Entangled quantum state: A stable Z 2 spin liquid. The excitations carry electric and magnetic charges of an emergent Z 2 gauge field. S. Sachdev, Phys. Rev. B 45, 12377 (1992) Y. Huh, M. Punk, and S. Sachdev, Phys. Rev. B 84, 094419 (2011) s The Z2 spin liquid was introduced in N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991), X.-G. Wen, Phys. Rev. B 44, 2664 (1991)

Kagome antiferromagnet: RVB Pick a reference configuration = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Kagome antiferromagnet: RVB A nearby configuration = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Kagome antiferromagnet: RVB Difference: a closed loop = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Kagome antiferromagnet: RVB Ground state: sum over closed loops = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Kagome antiferromagnet: RVB Ground state: sum over closed loops = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Kagome antiferromagnet: RVB Ground state: sum over closed loops = P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974). D. Rokhsar and S. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

Entanglement in the Z2 spin liquid B A P Sum over closed loops: only an even number of links cross the boundary between A and B

Entanglement in the Z2 spin liquid B A P S E = ap ln(2) where P is the surface area (perimeter) of the boundary between A and B. A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71, 022315 (2005) M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006) Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B 84, 075128 (2011)

Kagome antiferromagnet Strong numerical evidence for a Z2 spin liquid Simeng Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011). Hong-Chen Jiang, Z. Wang, and L. Balents, arxiv:1205.4289 S. Depenbrock, I. P. McCulloch, and U. Schollwoeck, arxiv:1205.4858

Kagome antiferromagnet Evidence for spinons Young Lee, APS meeting, March 2012 http://meetings.aps.org/link/baps.2012.mar.h8.5

Conformal quantum matter

Coupled dimer antiferromagnet H = ij J ij Si S j S=1/2 spins J J/ Examine ground state as a function of

= 1 2 S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. Lett. 60, 1057 (1988). N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994). c Quantum critical point described by a CFT3 (O(3) Wilson-Fisher)

Entanglement at the quantum critical point Entanglement entropy obeys S E = ap,where is a shape-dependent universal number associated with the CFT3. B A P M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Phys. Rev. B 80, 115122 (2009) B. Hsu, M. Mulligan, E. Fradkin, and Eun-Ah Kim, Phys. Rev. B 79, 115421 (2009) H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011) I. Klebanov, S. Pufu, and B. Safdi, arxiv:1105.4598

Holography r Key idea: ) Implement r as an extra dimension, and map to a local theory in d + 2 spacetime dimensions.

For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformaion (i =1...d) x i! x i, t! t, ds! ds This gives the unique metric ds 2 = 1 r 2 dt 2 + dr 2 + dx 2 i Reparametrization invariance in r has been used to the prefactor of dx 2 equal to 1/r i 2. This fixes r! r under the scale transformation. This is the metric of the space AdS d+2.

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 zr

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 A zr

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 A zr Associate entanglement entropy with an observer in the enclosed spacetime region, who cannot observe outside : i.e. the region is surrounded by an imaginary horizon. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 A zr The entropy of this region is bounded by its surface area (Bekenstein-Hawking- t Hooft-Susskind) S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 Minimal surface area A measures entanglement entropy zr S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Tensor network representation of entanglement at quantum critical point D-dimensional d space depth of entanglement M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007) G. Vidal, Phys. Rev. Lett. 99, 220405 (2007) F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)

Tensor network representation of entanglement at quantum critical point A D-dimensional d space Entanglement entropy = Number of links on optimal surface intersecting minimal number of links. depth of entanglement Brian Swingle, arxiv:0905.1317

Tensor network representation of entanglement at quantum critical point A D-dimensional d space Entanglement entropy = Number of links on optimal surface intersecting minimal number of links. Emergent depth of direction entanglement of AdSd+2 Brian Swingle, arxiv:0905.1317

AdS/CFT correspondence AdS 4 R 2,1 Minkowski CFT3 A zr Computation of minimal surface area yields S E = ap, where is a shape-dependent universal number. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

AdS/CFT correspondence AdS 3 R 1,1 Minkowski CFT2 A P zr C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424, 443 (1994). Computation of minimal surface area, or direct computation in CFT2, yield S E =(c/6) ln P,wherecis the central charge. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Compressible quantum matter

The Fermi liquid k F! Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T (d )/z with violation of hyperscaling exponent = d 1.

The Fermi liquid q k F! Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T (d )/z with violation of hyperscaling exponent = d 1.

The Fermi liquid q k F! Fermi wavevector obeys the Luttinger relation kf d fermion density Q, the Sharp particle and hole of excitations near the Fermi surface with energy q z, with dynamic exponent z =1. The phase space density of fermions is e ectively one-dimensional, so the entropy density S T (d )/z with violation of hyperscaling exponent = d 1.

Entanglement entropy of Fermi surfaces B A P Logarithmic violation of area law : S E = 1 12 (k F P )ln(k F P ) for a circular Fermi surface with Fermi momentum k F, where P is the perimeter of region A with an arbitrary smooth shape. Non-Fermi liquids have, at most, the 1/12 prefactor modified. D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006) B. Swingle, Physical Review Letters 105, 050502 (2010)

To obtain a non-fermi liquid we start with a Fermi liquid, and couple it (as strongly as possible) to a low-energy bosonic mode at (A) a non-zero wavevector, of order the reciprocal lattice vector (B) zero wavevector

(A) Fermi liquid+antiferromagnetism Metal with large Fermi surface + The electron spin polarization obeys S(r, ) = (r, )e ik r where K is the ordering wavevector.

(A) Fermi liquid+antiferromagnetism Quantum critical point of Fermi surface reconstruction ncreasing SDW h~' i6=0 Metal with electron and hole pockets h~' i =0 Metal with large Fermi surface Increasing interaction S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

(A) Fermi liquid+antiferromagnetism Quantum critical point of Fermi surface reconstruction ncreasing SDW Erez Berg h~' i6=0 Metal with electron and hole pockets h~' i =0 Metal with large Fermi surface Increasing interaction S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

(A) Fermi liquid+antiferromagnetism Quantum critical point of Fermi surface reconstruction ncreasing SDW Erez Berg h~' i6=0 h~' i =0 Metal with electron Metal with large Quantum Monte Carlo without the sign problem! and hole pockets Fermi surface Results showing Fermi surface reconstruction, antiferromagnetic criticality, and Increasing spin-singlet interaction d-wave superconductivity S. Sachdev, E. A. Berg, V. Chubukov, M. Metlitski, and and A. Sokol, S. Sachdev, Phys. Rev. arxiv:1206.0742 B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

To obtain a compressible state which is not a Fermi liquid, take a Fermi surface in d = 2, and couple it to any gapless bosonic field,, which has low energy excitations near q = 0. The field could represent quantum critical point of ferromagnetic ordering qcp of breaking of point-group symmetry (Ising-nematic order) qcp of breaking of time-reversal symmetry qcp of circulating currents transverse component of an Abelian or non-abelian gauge field.... (B) Strange metals

The Fermi liquid q k F! k d F Q, the fermion density Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P.

The Fermi q k F! (B) Strange metals k F! liquid k d F Q, the fermion density k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P.

The Fermi q k F! (B) Strange metals q k F! liquid k d F Q, the fermion density k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P. M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

The Fermi q k F! (B) Strange metals q k F! liquid k d F Q, the fermion density k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P.

The Fermi q k F! (B) Strange metals q k F! liquid k d F Q, the fermion density k d F Q. Sharp fermionic excitations near Fermi surface with q z, and z =1. Entropy density S T (d )/z with violation of hyperscaling exponent = d 1. Entanglement entropy S E k d 1 F P ln P. Di use fermionic excitations with z =3/2 to three loops. S T (d )/z with = d 1. S E k d 1 F P ln P. Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. Lett. 107, 067202 (2011)

Computations in the 1/N expansion + Graph mixing antipodal arcs is O N 3/2 (instead of O (N)), violating genus expansion All planar graphs of fermions on an arc of the Fermi surface are as important as the leading term M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010) Sung-Sik Lee, Physical Review B 80, 165102 (2009)

Holography r

Consider the metric which transforms under rescaling as x i! x i t! z t ds! /d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical points). is the violation of hyperscaling exponent. The most general choice of such a metric is ds 2 = 1 ds 2 = 1 dt 2 r 2 r + 2d(z 1)/(d ) r2 /(d ) dr 2 + dx 2 r 2 i r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i We have used reparametrization invariance in r to choose so that it scales as r! (d )/d r. L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

ds 2 = 1 r 2 dt 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i At T > 0, there is a horizon, and computation of its Bekenstein-Hawking entropy shows S T (d )/z. So is indeed the violation of hyperscaling exponent as claimed. For a compressible quantum state we should therefore choose = d 1. No additional choices will be made, and all subsequent results are consequences of the assumption of the existence of a holographic dual. L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of strange metals ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i = d 1 Application of the Ryu-Takayanagi minimal area formula to a dual Einstein-Maxwell-dilaton theory yields S E Q (d 1)/d P ln P which a co-e cient independent of UV details and of the shape of the entangling region. These properties are just as expected for a circular Fermi surface with Q kf d. N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012). L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of strange metals ds 2 = 1 dt 2 r 2 r 2d(z 1)/(d ) + r2 /(d ) dr 2 + dx 2 i = d 1 The null energy condition (stability condition for gravity) yields a new inequality z 1+ d In d = 2, this implies z 3/2. So the lower bound is precisely the value obtained from the field theory. N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012). L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of strange metals Hidden Fermi surfaces of quarks Gauss Law and the attractor mechanism, Luttinger theorem on the boundary

Conclusions Gapped quantum matter Numerical and experimental observation of a spin liquid on the kagome lattice. Likely a Z2 spin liquid.

Conclusions Conformal quantum matter Numerical and experimental observation in coupled-dimer antiferromagnets, and at the superfluid-insulator transition of bosons in optical lattices.

Conclusions Compressible quantum matter Field theory of a non-fermi liquid obtained by coupling a Fermi surface to a gapless scalar field with low energy excitations near zero wavevector. Obtained promising holographic dual of this theory.