Topological insulators

Similar documents
Introductory lecture on topological insulators. Reza Asgari

arxiv: v1 [cond-mat.other] 20 Apr 2010

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Topological insulator (TI)

Topological insulators

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Introduction to topological insulators. Jennifer Cano

The Quantum Spin Hall Effect

A Short Introduction to Topological Superconductors

Topological Insulators

Effective Field Theories of Topological Insulators

Topological Insulators and Superconductors

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Basics of topological insulator

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Floquet theory of photo-induced topological phase transitions: Application to graphene

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Topological insulators. Pavel Buividovich (Regensburg)

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Topological Defects inside a Topological Band Insulator

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Quantum Spin Hall Insulator State in HgTe Quantum Wells

InAs/GaSb A New 2D Topological Insulator

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

Room temperature topological insulators

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

5 Topological insulator with time-reversal symmetry

Andreev transport in 2D topological insulators

Physics of Semiconductors

Topological Physics in Band Insulators II

From graphene to Z2 topological insulator

v. Tε n k =ε n k T r T = r, T v T = r, I v I = I r I = v. Iε n k =ε n k Berry curvature: Symmetry Consideration n k = n k

Topological Insulators

Organizing Principles for Understanding Matter

Single particle Green s functions and interacting topological insulators

Topological Phases of Matter Out of Equilibrium

POEM: Physics of Emergent Materials

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

InAs/GaSb A New Quantum Spin Hall Insulator

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Quantum anomalous Hall states on decorated magnetic surfaces

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene

Symmetry, Topology and Phases of Matter

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Topological insulator with time-reversal symmetry

Floquet Topological Insulators and Majorana Modes

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A

Les états de bord d un. isolant de Hall atomique

2D Materials IF-USP

Weyl fermions and the Anomalous Hall Effect

Lecture notes on topological insulators

Quantum transport in nanoscale solids

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

arxiv: v1 [cond-mat.mes-hall] 17 Jan 2013

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

KITP miniprogram, Dec. 11, 2008

Dirac fermions in condensed matters

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Spin Superfluidity and Graphene in a Strong Magnetic Field

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator

Unconventional electron quantum optics in condensed matter systems

Berry s phase in Hall Effects and Topological Insulators

Topological Superconductivity and Superfluidity

Fundamental concepts of spintronics

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Topological thermoelectrics

Weyl semi-metal: a New Topological State in Condensed Matter

Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

3D topological insulators and half- Heusler compounds

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Local currents in a two-dimensional topological insulator

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version

Topological Insulators in 3D and Bosonization

Topological Phases under Strong Magnetic Fields

Topological states of matter in correlated electron systems

Protection of the surface states of a topological insulator: Berry phase perspective

The Quantum Hall Effect

Topological Photonics with Heavy-Photon Bands

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Anderson localization, topology, and interaction

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers)

Topological insulator gap in graphene with heavy adatoms

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

2D Electron Systems: Magneto-Transport Quantum Hall Effects

Special Topic: Topological Insulators Quantum anomalous Hall effect

Classification of Symmetry Protected Topological Phases in Interacting Systems

arxiv: v1 [cond-mat.str-el] 6 May 2010

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System

Superinsulator: a new topological state of matter

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

Transcription:

http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689

what are topological insulators? gapped bulk states + conducting (gapless) edge (surface) states due to topology M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82, 345 (21)

:outline: mesoscopics for pedestrians topological insulators edge states in HgTe quantum wells magnetism of HgTe edge states B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 75418 (212)

mesoscopics for pedestrians bulk states quantum point contacts current states

How much current per spin flows in a quantum channel?.. conductance quantum.. resistance quantum

conductance quantization: n-channel transport.. conductance quantization

conductance quantization B. J. van Wees, Phys. Rev. Lett. 6, 848 (1988). D. A. Wharam et al. J. Phys. C 21, L29 (1988). e n=1 (2 spins) GaAs/AlGaAs QPC lead resistance subtracted B. J. van Wees, Phys. Rev. Lett. 6, 848 (1988) picture from C. W. J. Beenakker and H. van Houten, Solid State Physics, 44, 1 (1991).

integer quantum Hall effect: topological edge states bulk states bulk Landau levels edge states edge states no backscattering

integer quantum Hall effect: topological edge states voltage probe

integer quantum Hall effect K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (198) Si MOSFET Original MOSFET von Klitzing s web site SdH IQHE GaAs/AlGaAs Cl picture from http://www.ptb.de/en/org/2/inhalte/qhe/e-quantenhalleffekt.htm

topological nature of the integer quantum Hall effect 1 st Chern number Blount-Berry curvature Blount-Berry phase Bloch state D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 45 (1982) Q. Niu, D.J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372 (1985)

topological insulators another look at the quantum Hall edge states quantum Hall edge states come in spin pairs: time reversal symmetry is broken skipping orbits bulk orbits (Landau levels)

topological insulators edge states with time reversal preserved: spin-orbit coupling spin-orbit edge states come in spin pairs, but move opposite: time reversal symmetry is preserved edge states no backscattering!!! the edge states are topologically protected against TR scattering

emergence of spin-orbit fields space-inversion symmetry breaking

Time reversal points spin degeneracy preserved

Z 2 invariance stable to continuous change of band parameters even number of crossings odd number of crossings

(non-exotic) materials classes of topological insulators Graphene Kane and Mele, 25, spin quantum Hall effect 2d topological insulators Zhang and co., 26, HgTe quantum wells (see later) 3d topological insulators (Zhang and Co) BiSe, BiTe, BiSb yet to be experimentally confirmed first 3d experimental TI other special materials structures

Electronic structure of CdTe and HgTe CdTe HgTe normal band ordering 1.6 ev gap narrow-gap semiconductor inverted band structure negative band gap -.3 ev

HgTe/CdTe quantum wells CdTe CdTe CdTe CdTe HgTe HgTe 2d topological insulator

HgTe/CdTe quantum wells: TI states B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (26). CdTe HgTe 2d topological insulator trivial interface states CdTe B. A. Volkov and O. A. Pankratov, JETL Lett. 42, 178 (1985) M. I. Dyakonov and A. V. Khaetskii, JETP Lett. 33, 11 (1981).

experimental evidence of TI states mesoscopic transport tunable gate and width Konig et al. (Molenkapm group, Wurzburg), Science 318, 766 (27)

experimental evidence of TI states mesoscopic transport (d) R14,23 (Ω) G =.3 e 2 /h G = 2 e 2 /h V g -V thr (V) Konig et al. (Molenkapm group, Wurzburg), Science 318, 766 (27)

magnetism of the TI edge states in HgTe how the edge states evolve with B-field? CdTe CdTe HgTe B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (26).

magnetism of the TI edge states in HgTe how the edge states evolve with B-field? B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (26).

magnetism of the TI edge states in HgTe B = B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 75418 (212) E [mev] 2 1-1 -2 (a) Fig. (b) Fig. (c) 2 1.78 1 1.76 1.74-2 -1 1 2 k [1 6 1/m]] -2-1 1 k [1 6 1/m] (b) v k < (c) v k > bulk states v k < v k > 5 4 3 5 2-1 -5 5 1 y [nm] 4 3 2 1 ρ [1 13 1/m 2 ] ρ [1 13 1/m 2 ] E [mev] 2 1-1 -2 (a) 8 7.6 7.2 Fig. (b) -2-1 1 k [1 6 1/m] Fig. (c) -2-1 1 2 k [1 6 1/m] (b) (c) v k < v k < v k > v k > TI states 1.5 1 ρ [1 14 1/m 2 ] 1.5 2-1 -5 5 1 y [nm] 1 ρ [1 14 1/m 2 ]

magnetism of the TI edge states in HgTe B =1 T B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 75418 (212) E [mev] 1 5-5 (a) Fig. (b) Fig. (c) (b) v k < v k < (c) v k > v k > QH edge states 5 4 3 2 1 5 4 3 2 1 ρ [1 14 1/m 2 ] ρ [1 14 1/m 2 ] E [mev] 1 5-5 (a) Fig. (b) Fig. (c) (b) v k < v k < (c) v k > v k > QH edge states 5 4 3 2 1 5 4 3 2 1 ρ [1 14 1/m 2 ] ρ [1 14 1/m 2 ] -1-2 -1 1 k [1 9 1/m] 2-1 -5 5 1 y [nm] -1-2 -1 1 k [1 9 1/m] 2-1 -5 5 1 y [nm]

magnetism of the TI edge states in HgTe how the edge states evolve with B-field? B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 75418 (212) 1 E [mev] 5-5 SQH QH -1 2 4 6 8 1 B [T]

magnetism of the TI edge states in HgTe bulk magnetic susceptibility B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 75418 (212) χ [1 17 J/(Tm) 2 ] 8 6 4 2-2 -4-6 -8 T = 1 K T = 1 K T = 1 K μ = 2 mev.25 5 1 15 2 1/B [1/T] χ [1 17 J/(Tm) 2 ] 8 6 4 2-2 -4-6 -8 T = 1 K T = 1 K T = 1 K μ = 2 mev.25 5 1 15 2 1/B [1/T]

Conclusion topological insulators are a new playground for (not only*) solid state physicists *X. Qi, E. Witten, and S. Zhang, Axion topological field theory of topological insulators, arxiv: 126.147