The Z, the W, and the Weak Neutral Current

Similar documents
Tests of the Electroweak Theory

Electroweak Physics. Tests of the Standard Model and Beyond. Problems With the Standard Model

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory: 3

Electroweak Theory: 2

Electroweak Theory: 5

e e Collisions at ELIC

Standard Model of Particle Physics SS 2013

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Particle Physics WS 2012/13 ( )

Measurement Using Polarized e + /e Beams

Tests of the Electroweak Theory

Electroweak Physics. Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

Standard Model of Particle Physics SS 2013

QCD and Rescattering in Nuclear Targets Lecture 2

Introduction to the Standard Model

Supersymmetry, Dark Matter, and Neutrinos

Precision Electroweak Data: Phenomenological Analysis

Electroweak measurements at HERA

Beyond the Standard Model

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

The Electro-Weak Sector. Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model

Strange Electromagnetic and Axial Nucleon Form Factors

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

High-energy neutrino interactions: first cross section measurements at TeV and above

Introduction to the Standard Model

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

IX. Electroweak unification

Electroweak Physics and Searches for New Physics at HERA

Electroweak Measurements at NuTeV: A Departure from Prediction

Low Energy Tests of the Weak Interaction

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,!" Only left-handed neutrinos and right-handed antineutrinos are observed.

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Neutrino Interactions at Low and Medium Energies

Introduction to particle physics Lecture 6

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

More on SM precision measurements. Marina Cobal University of Udine

3.2 DIS in the quark parton model (QPM)

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002

Introduction to particle physics Lecture 7

SuperB EW Physics Update: Is there a strong EW case for polarisaton at the charm threshold?

The Standar Model of Particle Physics Lecture II

Symmetry Tests in Nuclear Physics

Standard Model of Particle Physics SS 2013

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Particles and Deep Inelastic Scattering

Antonio Pich. IFIC, CSIC Univ. Valencia.

8 The structure of the nucleon

Physics at Hadron Colliders Partons and PDFs

Lecture 11. Weak interactions

Basics of Higgs Physics

Standard Model Theory of Neutron Beta Decay

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano

Hadronic events in e + e -

Analysis of Electroweak Precision Data and Prospects for Future Improvements

Current Status of the NuTeV Experiment

Inelastic scattering

Results on the proton structure from HERA

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

The Physics of Heavy Z-prime Gauge Bosons

Quark-Hadron Duality in Structure Functions

Standard Model of Particle Physics SS 2013

Finding the Higgs boson

Weak Interactions & Neutral Currents

PRECISION MEASUREMENTS

Introduction to Operator Product Expansion

arxiv:hep-ph/ v1 13 Oct 2004

Current knowledge tells us that matter is made of fundamental particle called fermions,

Some of the experimental origins of the Electroweak Theory. Peter Fisher MIT August 18, 2006

arxiv:hep-ph/ v2 2 May 1997

Higgs-charm Couplings

Search for New Physics at HERA

Lecture 10: Weak Interaction. 1

Introduction to Quantum Chromodynamics (QCD)

DEEP INELASTIC SCATTERING

The Qweak experiment: a precision measurement of the proton s weak charge

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

14 Top Quark. Completing the Third Generation

Non-local 1/m b corrections to B X s γ

Interactions of Neutrinos. Kevin McFarland University of Rochester INSS 2013, Beijing 6-8 August 2013

Results on the proton structure from HERA

Standard Model of Particle Physics SS 2012

Proton Structure Function Measurements from HERA

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

Introduction to Elementary Particle Physics I

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig

Precision EW measurements at Run 2 and beyond

Soft Collinear Effective Theory: An Overview

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Problems for SM/Higgs (I)

Particle Physics WS 2012/13 ( )

Transcription:

The Z, the W, and the Weak Neutral Current g L Z = J µ Z 2 cos θ Z µ W J µ Z = r t 3 rl ψ 0 r γµ (1 γ 5 )ψ 0 r 2 sin2 θ W J µ Q t 3 ul = t3 dl = t3 νl = t3 el = 1 2, tan θ W = g /g L NC eff = G F 2 J µ Z J Zµ Primary prediction and test of electroweak unification WNC discovered 1973 (Gargamelle at CERN, HPW at FNAL) W, Z discovered directly 1983 (UA1, UA2) 90 s: Z pole (LEP, SLD), 0.1% P529 Spring, 2013 1

νe νe L νe = G F 2 ν µ γ µ (1 γ 5 )ν µ ē γ µ (g νe V gνe A γ5 )e SM : g νe V 1 2 + 2 sin2 θ W, g νe A 1 2 ν µ e e ν e ν e e Z W Z ν µ e ν e e ν e e P529 Spring, 2013 2

Any gauge model (with lefthanded ν) some g νe V,A Need SM rad. corr. ν e : g νe V,A WCC gνe V,A + 1 Alternative models w. disjoint parameters and perturbations on SM Amplitude-squared (ν(p 1 )e (p 2 ) e (p 3 )ν(p 4 )) 1 2 [ M 2 = 16G 2 F (gv + g A ) 2 p 1 p 2 p 3 p 4 s 1 s 2 s 3 s 4 + (g V g A ) 2 p 1 p 3 p 2 p 4 (g 2 V g2 A )m2 e p ] 1 p 4 P529 Spring, 2013 3

Cross section dσ νµ,ν µ dy = G2 F m ee ν 2π (g νe2 V [ (g νe V g νe2 A )y m e E ν ± gνe A )2 + (g νe V ] gνe A )2 (1 y) 2 where 0 y T e /E ν (1 + m e /2E ν ) 1 For E ν m e σ = G2 F m e E ν 2π [ (g νe V ± gνe A )2 + 1 3 (gνe V ] gνe A )2 Flux uncertainties cancel in R σ νµ e/σ νµ e Most precise: CHARM II (CERN) P529 Spring, 2013 4

g V Νe 1.0 0.5 0.0 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Ν Μ Ν Μ e Ν e e Ν e e 1.0 1.0 0.5 0.0 0.5 0 A P529 Spring, 2013 5

Deep Inelastic ν Scattering l(k) q l (k ) e ± p e ± X, µ ± p µ ± X, ( ) ν µ p µ X, ( ) ν µ p ( ) ν µ X at Q 2 Mp 2 (or p n, N) WCC: test of QCD, quark model p X Q 2 = q 2 > 0 }{{} lab ν = p q M p k k 2kk (1 cos θ) x = Q 2 2M p ν y = ν E k k k k P529 Spring, 2013 6

ν µ µ ν µ µ ν µ ν µ W + d u W + ū d Z q q p X p X p X Charged current, ( ) ν µ p µ X (Q 2 M 2 W ) d σ ν, ν dk dω = G2 F k 32π 2 k Lµν ν, ν W ν, ν µν L µν ν = Tr [ γ µ (1 γ 5 ) k γ ν (1 γ 5 ) k ] Typeset by FoilTEX 1 = 8 k µ k ν + k µ k ν µν q2 + g 2 + iɛµρνσ k ρ k σ }{{} V A interference P529 Spring, 2013 7

Hadronic tensor (different for e, ν, ν) [ W ν, ν µν = g µν + q ] µq ν W ν, ν ( q 2 1 Q 2, ν ) + 1 [ p M 2 µ p q ] [ q q 2 µ p ν p q q 2 F ν, ν 1 + iɛ µρνσ p ρ q σ 2M ( x, Q 2 ) = MW ν, ν 1 ν, ν 2W3 ( Q 2, ν ) ( Q 2, ν ), F ν, ν 2,3 q ν ] W ν, ν 2 ( Q 2, ν ) ( x, Q 2 ) = νw ν, ν 2,3 ( Q 2, ν ) Approximate scaling (up to QCD corrections): F ν, ν i ( x, Q 2 ) F ν, ν i (x) Cross section predicted to scale as E ν : ν, ν d2 σ cc dxdy = G2 F ME ν π [ xy 2 F ν, ν 1 (x) + (1 y)f ν, ν 2 (x) ± xy(1 y ] ν, ν )F3 (x) 2 P529 Spring, 2013 8

σ ν, ν cc = 1 0 dx 1 0 ν, ν d2 σ cc dy dxdy 0 10 20 30 50 100 150 200 250 300 350 1.0 1.0 0.8 0.8 s T /E n [10 Ð38 cm 2 /GeV] 0.6 0.6 0.4 0.4 0.2 [1] NuTeV [5] CDHSW [9] GGM-PS n _ [13] CRS 0.2 [2] CCFR (96) [6] GGM-SPS [10] IHEP-JINR [14] ANL [3] CCFR (90) [7] BEBC WBB [11] IHEP-ITEP [15] BNL-7ft [4] CCFRR [8] GGM-PS n [12] SKAT [16] CHARM 0.0 0.0 0 10 20 30 50 100 150 200 250 300 350 E n [GeV] P529 Spring, 2013 9

Simple parton model (without mixing, heavy quarks) F ν 2 (x) = 2xF ν 1 (x) = 2x [d(x) + ū(x)], F ν 3 (x) = 2x [d(x) ū(x)] F ν 2 (x) = 2xF ν 1 (x) = 2x [ u(x) + d(x) ], F ν 3 (x) = 2x [ u(x) d(x) ] Isospin: W ν in W ν ip, W ν ip W ν in, W ν in = 1 2 [ ] W ν ip + W ν in W ν in 5/18 th rule: F 2N F ν 2N = 1 2 (F 2p + F 2n ) ( = F ν 2p + F2n) ν 1 2 ( 4 9 + 1 9) 1 2 x ( u p + d p + ū p + d p) x ( d p + ū p + u p + d p) = 5 18 P529 Spring, 2013 10

Include mixing, m c suppression factors ξ c : d 2 σ cc ν dxdy =2G2 F ME ν {xd [ ] [ ] V ud 2 + V cd 2 ξ c +xs Vus 2 + V π }{{} cs 2 ξ }{{ c } λ d λ s + x (ū + c) (1 y) 2} 2G2 F ME ν π [x (d + s) + x (ū + c) (1 y) 2] d 2 σ cc ν dxdy =2G2 F ME ν π 2G2 F ME ν π [x (u + c) (1 y) 2 + x dλ d + x sλ s ] [ x (u + c) (1 y) 2 + x d ] + x s P529 Spring, 2013 11

Dimuons (extract V cd 2, S V cs 2, ξ c, where S = xs(x)dx): ν( ν)n µ X + c( c) from d, s c (s, d)µ + ν µ, c ( s, d)µ ν µ P529 Spring, 2013 12

νq νq (Mainly Deep Inelastic) WNC: test of electroweak standard model L νhadron = G F 2 ν γ µ (1 γ 5 )ν i [ ɛl (i) q i γ µ (1 γ 5 )q i + ɛ R (i) q i γ µ (1 + γ 5 )q i ] Standard model ɛ L (u) 1 2 2 3 sin2 θ W ɛ R (u) 2 3 sin2 θ W ɛ L (d) 1 2 + 1 3 sin2 θ W ɛ R (d) 1 3 sin2 θ W P529 Spring, 2013 13

Deep inelastic ( ) ν µ N ( ) ν µ X l(k) l (k ) d 2 σ NC νn dx dy = 2G2 F M pe ν { π [ ɛl (u) 2 + ɛ R (u) 2 (1 y) 2] (xu + xc ξ c ) p q X + [ ɛ L (d) 2 + ɛ R (d) 2 (1 y) 2] (xd + xs) + [ ɛ R (u) 2 + ɛ L (u) 2 (1 y) 2] (xū + x c ξ c ) + [ ɛ R (d) 2 + ɛ L (d) 2 (1 y) 2] (x d + x s)} (ɛ L (i) ɛ R (i) for ν) P529 Spring, 2013 14 Typeset by FoilTEX 1

WNN/WCC ratios measured to 1% or better by CDHS and CHARM (CERN) and CCFR (FNAL) (many strong interaction, ν flux, and systematic effects cancel) For isoscalar targer (N p = N n ); ignoring s, c and third family sea; ignoring c threshold correction (ξ c = 1) R ν σnc νn σνn CC R ν σnc νn σνn CC g 2 L + g2 R r g 2 L + g2 R r g 2 L ɛ L(u) 2 + ɛ L (d) 2 1 2 sin2 θ W + 5 9 sin4 θ W g 2 R ɛ R(u) 2 + ɛ R (d) 2 5 9 sin4 θ W r σνn CC/σCC νn measured (r 1/3 for q/q 0) P529 Spring, 2013 15

0.4 0.2 0.2 0.1 0.3 ε L (d) (u) 0.0-0.2 1.0 0.7 ε R (d) (u) 0.0-0.1 0.0-0.4 0.4 0.0-0.2-0.4-0.2 0.0 0.2 0.4 ε L (u) -0.2-0.1 0.0 0.1 0.2 ε R (u) P529 Spring, 2013 16

Most precise sin 2 θ W before LEP/SLD: s 2 W 0.233 ± 0.003 (exp) ± 0.005 (m c ) Must correct for N n N p ; s(x), c(x), ξ c, QCD, third family mixing, W/Z propagators, radiative corrections, experimental cuts Can separate ɛ i (u)/ɛ i (d) by p and n targets, e.g., bubble chamber (less precise) Error dominated by charm threshold (m c in ξ c ) Can reduce sensitivity using Paschos-Wolfenstein ratio R = σnc νn σnc νn σνn CC σcc νn g 2 L g2 R 1 2 sin2 θ W P529 Spring, 2013 17

Weak-Electromagnetic Interference Low energy: Z exchange much smaller than Coulomb, but observe V A (parity-violating) and A A (parity conserving) effects High energy: γ and Z may be comparable (propagator effects) Observables Polarization (charge) asymmetries in ed ex (SLAC), µc µx (CERN); e e Møller (SLAC); low energy elastic or quasielastic (Mainz, Bates, CEBAF) Atomic parity violation in Cs (Boulder, Paris) and other atoms Cross sections and FB asymmetries in e + e l l, q q, b b (SPEAR, PEP, DORIS, TRISTAN, LEP II) FB asymmetries in pp e + e (CDF, D0) P529 Spring, 2013 18

Parity-violating e-hadron L eq = G F 2 i [ C1i ē γ µ γ 5 e q i γ µ q i + C 2i ē γ µ e q i γ µ γ 5 q i ] Standard model C 1u 1 2 + 4 3 sin2 θ W C 2u 1 2 + 2 sin2 θ W C 1d 1 2 2 3 sin2 θ W C 2d 1 2 2 sin2 θ W P529 Spring, 2013 19

Atomic parity violation Axial e, vector nucleon currents lead to potential V ( r e ) G F 4 2 Q W δ 3 ( r e ) σ e v e c + HC Weak charge Q W = 2 [C 1u (2Z + N) + C 1d (Z + 2N)] Z(1 4 sin 2 θ W ) N Measure in 6S 7S transition (S P wave mixing) Cs is very simple atom; radiative corrections now under control P529 Spring, 2013 20

0.18 C1 u C1 d 0.16 0.14 0.12 Mainz e Be Bates ec SLAC ed 0.16 0.18 0.20 0.22 0.24 0.26 Q W Cs Q W Th PVES 0.10 0.8 0.7 0.6 0.5 0.4 3 1 u 1 d P529 Spring, 2013 21

A FB 1 0.75 0.5 0.25 0-0.25-0.5-0.75 SPEAR MARK I PEP HRS MAC MARK II PETRA CELLO JADE MARK J PLUTO TASSO TRISTAN LEP AMY TOPAZ VENUS e + e! " µ + µ! -1 0 25 50 75 100 125 150 175 200 #s [GeV] (J. Mnich, Phys. Rep. 271, 181) 10. Electroweak model and constraints on new physics 15!"$)!"$'% L3 e + e l + l, hadrons below/above Z-pole SLAC E158 Polarized Møller Asymmetry e e asymmetry, P 90% sin 2 θ eff (Q) = 0.2397(13) W (Q 2 = 0.026 GeV 2 ) *+, $ θ ' (µ)!"$'(!"$''!"$'$!"$'!"$&%!"$&( -. /0123 -. /43 ν*+,- Future: Q W EAK (JLAB): polarized ep, s 2 0.0006!"$&'!"$&$ CD556E -F4<G 5617# :4;<=>?,!"$&!"$$% 4@AB8 859!"!!!#!"!!#!"!#!"# # #! #!! #!!! #!!!! µ!"#$%& (Running ŝ 2 Z in MS scheme) P529 Spring, 2013 22

as the ɛ R, are strongly correlated and non-gaussian, so that for implementations we recommend the parametrization using g 2 i and θ i = tan 1 [ɛ i (u)/ɛ i (d)], i = L or R. The analysis of more recent low energy experiments in polarized electron scattering performed in Ref. 123 is included by means of the two orthogonal constraints, cos γ C 1d sin γ C 1u =0.342 ± 0.063 and sin γ C 1d + cos γ C 1u = 0.0285 ± 0.0043, where tan γ 0.445. In the SM predictions, the uncertainty is from M Z, M H, m t, m b, m c, α(m Z ), and α s. Quantity Value SM Correlation ɛ L (u) 0.338 ± 0.016 0.3461(1) ɛ L (d) 0.434 ± 0.012 0.4292(1) nonɛ R (u) 0.174 +0.013 0.004 0.1549(1) Gaussian ɛ R (d) 0.023 +0.071 0.047 0.0775 g 2 L 0.3025 ± 0.0014 0.3040(2) 0.18 0.21 0.02 g 2 R 0.0309 ± 0.0010 0.0300 0.03 0.07 θ L 2.48 ± 0.036 2.4630(1) 0.24 θ R 4.58 +0.41 0.28 5.1765 gv νe 0.040 ± 0.015 0.0398(3) 0.05 ga νe 0.507 ± 0.014 0.5064(1) C 1u + C 1d 0.1537 ± 0.0011 0.1528(1) 0.64 0.18 0.01 C 1u C 1d 0.516 ± 0.014 0.5300(3) 0.27 0.02 C 2u + C 2d 0.21 ± 0.57 0.0089 0.30 C 2u C 2d 0.077 ± 0.044 0.0625(5) Q W (e) = 2 C 2e 0.0403 ± 0.0053 0.0473(5) defined in Eqs. (1.11) (1.14) are given in Table 1.9 along with the predictions of the P529 SM. The agreement is very good. (The ν-hadron results without the NuTeV data can be Spring, 2013 found in the 1998 edition of this Review, and the fits using the original NuTeV data in the 23 2006 edition.) The off Z pole e + e results are difficult to present in a model-independent

Input Parameters for Weak Neutral Current and Z-Pole Basic inputs SU(2) and U(1) gauge couplings g and g ν = 2 0 φ 0 0 (vacuum of theory) Higgs mass M H (value unknown) (enters radiative corrections) Heavy fermion masses, m t, m b, (phase space; radiative corrections) strong coupling α s (enters radiative corrections) Trade g, g, ν for precisely known quantities G F = 1 2ν 2 from τ µ (G F 1.166364(5) 10 5 GeV 2 ) α = 1/137.035999084(51) (but must extrapolate to M Z ) M Z (or sin 2 θ W ) P529 Spring, 2013 24

Definitions of sin 2 θ W Several equivalent expressions for sin 2 θ W at tree-level sin 2 θ W = 1 M 2 W sin 2 θ W cos 2 θ W = M 2 Z πα 2GF M 2 Z on shell Z mass sin 2 θ W = g 2 g 2 + g 2 MS g Ze+ e V = 1 2 + 2 sin2 θ W effective Each can be basis of definition of renormalized sin 2 θ W related by calculable, m t M H dependent, corrections of O(α)) (others P529 Spring, 2013 25

Radiative Corrections γ QED corrections to W or Z exchange γ No vacuum polarization or box diagrams Finite and gauge invariant Depend on kinematic variables and cuts calculate for each experiment γ P529 Typeset by FoilTEX Spring, 2013 1 26

Electroweak at multiloop level (include W, Z, γ) self-energy vertex box (quadratic) m t and (logarithmic) M H dependence from W W, ZZ, Zγ self-energies (SU(2)-breaking); m t from Zb b vertex Z(γ) t(b) Z W t W b W b b t b t(b) b t t W W H H Typeset by FoilTEX 1 Z Z P529 Spring, 2013 27

Z(γ) Z W G α s fromt(b) QCD vertices and mixed QCD-EW H b H H Mixed QCD-EW (e.g., self-energies and vertices, fermion masses) Awkward in on-shell G mixed Typeset by FoilTEX Typeset by FoilTEX 1 P529 Spring, 2013 28

The W and Z Masses and Decays On-shell scheme, s 2 W 1 M 2 W /M 2 Z M W = A 0 s W (1 r) 1/2 M Z = M W c W c 2 W = 1 s2 W, A 0 = (πα/ 2G F ) 1/2 = 37.28061(8) GeV r rad. corrections relating α, α(m Z ), G F, M W, and M Z r 1 α ρ t ˆα(M Z ) tan }{{} 2 + small }{{ θ W} 0.06655(11) artificially large ρ t 3 G F m 2 ( t 8 = 0.00939 m t 2π 2 173.1 GeV ) 2 P529 Spring, 2013 29

Modified minimal subtraction (M S) scheme M W = A 0 ŝ Z (1 ˆr W ) 1/2 M Z = M W ˆρ 1/2 ĉ Z ˆr W 1 α + small ˆα(M Z ) }{{} 0.06655(11) ˆρ 1 + 3 G F m 2 t + small 8 2π 2 }{{} ρ t 0.00939 P529 Spring, 2013 30

The W decay width Γ(W + e + ν e ) = G F M 3 W 6 2π 226.31 ± 0.07 MeV Γ(W + u i d j ) = CG F MW 3 6 2π V ij 2 (706.18 ± 0.22) V ij 2 MeV 1, leptons C = 3 }{{} color ( 1 + α s(m W ) π ) + 1.409 α2 s 12.77 α3 π 2 s 80.0 α4 π 3 s, quarks π 4 Also, QED, mass; g 2 M W /4 2 G F M 3 W absorbs running α Γ W 2.0910 ± 0.0007 GeV (SM) Experiment (LEP,CDF, D0): Γ W = 2.085 ± 0.042 GeV P529 Spring, 2013 31