THERMAL DESIGN OF POWER SEMICONDUCTOR MODULES FOR MOBILE COMMNICATION SYSYTEMS. Yasuo Osone*

Similar documents
Substrate Selection Can Simplify Thermal Management

WW12C, WW08C, WW06C, WW04C, WW02C. Low ohm chip resistors ( power ) Size 1206, 0805, 0603, 0402, 0201

Thermal Resistance Measurement

Part G-2: Problem Bank

EE382M-14 CMOS Analog Integrated Circuit Design

7-9 October 2009, Leuven, Belgium Electro-Thermal Simulation of Multi-channel Power Devices on PCB with SPICE

A Guide to Board Layout for Best Thermal Resistance for Exposed Packages

Boundary Condition Dependency

Tools for Thermal Analysis: Thermal Test Chips Thomas Tarter Package Science Services LLC

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

MIL-STD-883E METHOD THERMAL CHARACTERISTICS

Mitigating Semiconductor Hotspots

Thermal Interface Materials (TIMs) for IC Cooling. Percy Chinoy

Reliability Qualification Report

THE HOT-SPOT PHENOMENON AND ITS COUNTERMEASURES IN BIPOLAR POWER TRANSISTORS BY ANALYTICAL ELECTRO- THERMAL SIMULATION

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

Application Note Thermal Design for the AWB, AWM and AWT series of Power Amplifier Modules Rev 0

Optimizing Diamond Heat Spreaders for Thermal Management of Hotspots for GaN Devices

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium

Through Silicon Via-Based Grid for Thermal Control in 3D Chips

print close Related Picking PCB Materials for Microwave Amps Matching Circuit Materials to a Design Mission Perusing Materials For High-Frequency PCBs

Application of thermography for microelectronic design and modelling

Understanding Integrated Circuit Package Power Capabilities

A Simple Closed Form Solution to Single Layer Heat Spreading Angle Appropriate for Microwave Hybrid Modules

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1

Using FLOTHERM and the Command Center to Exploit the Principle of Superposition

Thermal Management of SMT LED Application Note

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES

THERMAL PERFORMANCE EVALUATION AND METHODOLOGY FOR PYRAMID STACK DIE PACKAGES

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Study of Reliability Test Methods for Die-attach Joints on Power Semiconductors

NPN/PNP transistor pair connected as push-pull driver in a SOT457 (SC-74) Surface-Mounted Device (SMD) plastic package.

Stacked Chip Thermal Model Validation using Thermal Test Chips

Component & Board Level Cooling.

Conjugate heat transfer from an electronic module package cooled by air in a rectangular duct

Understanding Integrated Circuit Package Power Capabilities

November MVP R&S FSW Analyzer. Vol. 54 No. 11. Founded in mwjournal.com

Technical Data Sheet. Pb Free. Specification GR101 SSC. Customer. Rev. 02 January 서식번호 : SSC- QP (Rev.0.

Two-Dimensional Numerical Investigation on Applicability of 45 Heat Spreading Angle

Heat Sinks and Component Temperature Control

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

FLOW VISUALIZATION OF THE BUOYANCY-INDUCED CONVECTIVE HEAT TRANSFER IN ELECTRONICS COOLING. Carmine Sapia

Thermal measurement a requirement for monolithic microwave integrated circuit design

Study of Steady and Transient Thermal Behavior of High Power Semiconductor Lasers

Thermal Management of Golden DRAGON LED Application Note

The Thermal Challenge

Semiconductor Thermal Resistance Standards versus Real Life. Bernie Siegal Thermal Engineering Associates, Inc.

Solid State Device Fundamentals

Electrical Characterization of 3D Through-Silicon-Vias

DATA SHEET. PBSS4480X 80 V, 4 A NPN low V CEsat (BISS) transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2004 Aug 5

SEMICONDUCTOR THERMAL MEASUREMENT PROCEDURE

DC and AC modeling of minority carriers currents in ICs substrate

Lecture 25. Semiconductor Memories. Issues in Memory

Structure Function The Bridge of. Simulation. Yafei Luo, MicReD Application engineer, Mentor Graphics

Microelectronics Part 1: Main CMOS circuits design rules

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link

HFM 100 Series. Thermal Conductivity Meter for measurement of insulation and construction materials.

DESIGN ISSUES OF A VARIABLE THERMAL RESISTANCE. Székely V., Mezősi G

Power Cycling Test Circuit for Thermal Fatigue Resistance Analysis of Solder Joints in IGBT

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

Optimization of Heat Spreader. A thesis presented to. the faculty of. In partial fulfillment. of the requirements for the degree.

MOS Transistor Properties Review

Deformation of solder joint under current stressing and numerical simulation II

DATA SHEET. BGY116D; BGY116E UHF amplifier modules DISCRETE SEMICONDUCTORS May 08

Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards

an alternative approach to junction-to-case thermal resistance measurements

Comparative assessment of a temperature distribution into different CPU coolers

Specification YGHR411-H

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

DISCRETE SEMICONDUCTORS DATA SHEET. BLT92/SL UHF power transistor

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

Micro-coolers fabricated as a component in an integrated circuit

13. Bipolar transistors

High Precision Thick Film chip resistors. Size 1206, 0805, 0603, 0402, 0201

Effect of Surface Contamination on Solid-State Bondability of Sn-Ag-Cu Bumps in Ambient Air

WW12E, WW08E, WW06E ±5%, ±1% Thick film low ohm chip resistors Size 1206, 0805, 0603 RoHS Exemption free and Halogen free

EE130: Integrated Circuit Devices

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

Dynamic Thermal Analysis of a Power Amplifier

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

Reliability assessment of a digital electronic board assembly using the physics-of-failure approach: a case study

Solid State Device Fundamentals

Compound Semiconductors. Electronic Transport Characterization of HEMT Structures

Solar Flat Plate Thermal Collector

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

Thermal Management In Microelectronic Circuits

Microwave Network Analysis

IMPROVEMENTS OF THE VARIABLE THERMAL RESISTANCE

DATA SHEET. BC369 PNP medium power transistor; 20 V, 1 A DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2003 Nov 20.

High Q / Low ESR Multilayer SMD Ceramic Capacitor 0402, 0603 & 0805 Sizes, NP0 Dielectric, (MCHH)Series

Microwave Multilayer SMD Ceramic Capacitor 0201 to 0805 Sizes (6.3V to 500V), NP0 Dielectric, (MCRF)Series

Reliability Evaluation Method for Electronic Device BGA Package Considering the Interaction Between Design Factors

THERMAL ANALYSIS AND OPTIMIZATION OF THERMAL PAD THICKNESS FOR TRANSISTOR MOUNTING IN FOR CPU S

DISCRETE SEMICONDUCTORS DATA SHEET. BLU86 UHF power transistor

Energy Conversion and Management

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

Heat Dissipation Design

Transcription:

Nice, Côte d Azur, France, 27-29 September 26 THERMAL DESIGN OF POWER SEMICONDUCTOR MODULES FOR MOBILE COMMNICATION SYSYTEMS Yasuo Osone* *Mechanical Engineering Research Laboratory, Hitachi, Ltd., 832-2 Horiguchi, Hitachinaka, Ibaraki, 312-34, JAPAN; yasuo.osone.td@hitachi.com ABSTRACT We investigated the thermal performance of a power semiconductor module used in mobile communication systems. The module contained hetero-junction bipolar transistor (HBT) fingers, which were fabricated on the top of a semiconductor substrate. We calculated the thermal resistance between the HBT fingers and the bottom surface of a multi-layer printed circuit board (PCB) using a finite element method (FEM) simulation. We used steady state analysis to evaluate the effect of various design factors on the thermal resistance of the We found that the thickness of the semiconductor substrate, the thickness of the multi-layer PCB, the thermal conductivity of the bonding material under the semiconductor substrate, and misalignment of thermal vias between each layer of PCB were the most important factors affecting the thermal resistance of the 1. INTRODUCTION A radio frequency (RF) communication circuit is an electrical component used in mobile communication systems. In a cell phone, about half of the phone s electrical power consumption is accounted for by the heat generate by the power amplifier, which amplifies the transmission signal from a transistor, in the phone s RF circuit. In the thermal design of power amplifiers, the objective is to develop a package structure of the module where the temperature does not exceed an allowable limit. Since power amplifiers have become progressively smaller, their thermal design has been a key factor in developing cell phones. Other key factors are the need to decrease turn around times in product development and to find a numerical method to optimize the thermal structure of products, which will be of significant use for thermal design work. Modeling know-how is also important I thermal design because automated modeling is difficult to apply to semiconductor devices. The objective of this paper is to show the thermal design technique of power amplifier modules in call phones using a finite element method (FEM). We evaluated the effect of various design factors on the thermal resistance of the power amplifier The thermal design of cell phones is becoming more important because they are approaching the limits of the allowable amount of heat that can be discharged into the environment. In fact, the heat dissipation densities of smaller power amplifiers have increased to W/cm 2. The problem is that, unlike when modeling an automobile, automatic modeling is not easily applied to the numerical modeling of semiconductor modules since their design data - such as mask layout data - are twodimensional. Further, the modeling has to handle a huge dynamic range. This range extends from the thickness of a 1 nm film to the 1 cm characteristic length of a printed circuit board. By applying FEM, thermal design, which involves optimizing the packaging structure, predicting the device temperature, and reducing the device temperature so that is does not exceed the allowable limit, is feasible. By applying an FEM technique, we investigated the thermal performance of power amplifier modules with GaAs hetero-junction bipolar transistors (HBTs). The thermal resistance of HBTs had been investigated using various approaches [1][2][3][4][5]. We believe that numerical methods are most appropriate for developing heatdissipating structures with low thermal resistance. In this study, we considered not only the layout and the shape of the HBT fingers, and the thickness and thermal conductivity of each component in the power amplifier module but also the misalignment of each component. The results of the simulation showed that that the thickness of GaAs substrate, the thickness of multi-layer PCBs, and the thermal conductivity of bonding material under the GaAs substrate were the dominant factors affecting the thermal resistance of the power amplifier The results also showed that the misalignment of GaAs substrate on the heat spreader did not have a major effect on the thermal resistance of the power amplifier

2. THERMAL DESIGN OF CELL PHONES Figure 1 shows a schematic diagram for a cell phone of the flow path of heat between heat sources and ambient air. Heat dissipated by discrete heat sources assembled on a PCB is first transferred to the PCB, and then conducted through the PCB to the front and rear panels by contact heat transfer. The heat in the front and rear panels is conducted to the skin of the cell phone user. The thermal design of semiconductor modules, such as power amplifiers, baseband large scale integrated (LSI) circuits, application processors, and other devices, usually considers the thermal resistance between the heat source and the PCB. Though the flow path of heat illustrated in fig. 1 and the thermal design model of heat flowing between heat sources and the PCB is not the same, the difference is negligible small because the heat capacity of the panels is much larger than that of the PCB. Ram et al. stated that the maximum amount of heat dissipated in a handheld computer or cell phone is about 5 W under average conditions [6]. If the total heat dissipation by semiconductors in the cell phone under such average conditions is lower than the maximum amount of heat, the thermal resistance of the front and rear panel is negligible. Since the heat capacity of the panels is much larger than those of other components in the cell phones, the interface between the PCB and the panels can be assumed that the isothermal boundary in the thermal design of the semiconductors in the cell phone. Figure 2 shows a flow chart of the thermal design process of power semiconductor modules mounted on a PCB when the effect of the case is negligible. The objective of thermal design of a module is to reduce the thermal resistance Rjc between the heat source and the ambient air so that the thermal resistance is lower than the allowable limit. Though both steady state and transient analysis are ideally required for the design, the transient analysis is usually omitted because the transient temperature increase is lower than that of the steady state when the heat dissipation from the heat sources is at a maximum. The steady state analysis will be discussed in the following section. 3. ANALYTICAL MODEL OF POWER AMPLIFIER MODULE Figure 3 shows the package structure of the power amplifier module surveyed in this paper. The thickness of the semiconductor substrate in fig. 3 is about.1 mm. devices, such as the HBT fingers, are fabricated on the top surface of the substrate. The package structure of the power amplifier module in this paper has a plated heat sink (PHS) that is plated under the bottom surface of the semiconductor substrate. The heat dissipated from the HBT fingers diffuses through the semiconductor substrate in fig. 3 horizontally to the PHS, the bonding paste-1, and the heat spreader. The temperature distribution in the flow path of heat is not constant even while it goes through the PHS layer. Contact Heat Transfer Heat Conduction Module(Heat Source) Printed Board Front/Rear Panel User Module (Heat Sources) Rear Panel Printed Circuit Board Front Panel Heat Conduction (Diffusion) Thermal Path between Heat Sources and Ambient Figure 1 Schematic diagram illustrating flow path of heat between heat sources and ambient in a cell phone Thermal Design of Power Module Device Model (Transistor Level) Modeling & Input Property Data Thermal Analysis (Simulation 1, Steady State) Model of Power Module (Chip - Module) Modeling & Input Property Data Thermal Analysis (Simulation 2) (Steady State & Transient) Rjc < Allowable Limit? Y End of Thermal Design Figure 2 Flow chart illustrating the thermal design of power semiconductor modules on PCB N

FEM Model Substrate PHS Bonding Paste - 1 Bonding Paste - 2 Multi layer Ccircuit Board Thermal Vias Figure 3 Cross cutting model of a power amplifier module FEM Model (1/4 Model) HBT Fingers (Heat Source) HBTs Array Substrate Figure 4 Quarter area model for the FEM analysis Table 1 Thermophysical properties of materials Density Specific Thermal Material 3 heat conductivity [kg/m ] [kj/(kg-k)] [W/(m-K)] Insulator (SiO2) substrate (GaAs) PHS Heat spreader (Cu) Thermal via Base material of multi-layer PCB (ceramic) Bonding paste-1 Bonding paste-2 219 532 193 893 84 32 45 1452.86.35.131.397.29..32.2 1.5 46. 313. 395. 27. 2.5 3. 24. The module package structure is composed of the semiconductor substrate with HBT fingers, a PHS, the bonding paste-1, a heat spreader, bonding paste-2, and a multi-layer PCB. The multi-layer PCB has thermal vias, which are thermally conductive and penetrate the multilayer PCB. Most of the heat dissipated by the HBT fingers goes through the thermal vias to the external boundary of the module because the multi-layer PCB is primarily made of heat-insulating ceramic material. Figure 4 shows the HBT fingers layout on the semiconductor substrate. To simplify the analysis, we used an orthogonal coordinate system. The shape of each layer was transformed into a rectangular parallelepiped. We assumed that the finger pitch was constant and the center position of the fingers coincided with the center of the semiconductor substrate so that a quarter area model could be used in the FEM analysis to reduce the size of the simulation model. We also assumed that the isothermal temperature at the bottom surface of the model in fig. 3 was 273 K. Other boundary conditions were adiabatic. The thermophysical properties of the materials used in the analysis are shown in Table 1. We determined the thermal resistance of the HBT fingers at the point where the temperature difference between the bottom surface and the place in which the temperature was higher than any other place in the model. We calculated the thermal resistance of the HBT fingers, the influence of the thickness of each component in the module, thermophysical properties of the heat spreader, and the alignment of the semiconductor substrate on the multi-layer PCB. In the thermal analysis, we used an HBT model that had 96 HBT fingers (16 fingers x 6 columns) and two layers of multi-layer PCB. We used a massively parallel processing computer (HITACHI SR- Model G1) for the thermal analysis. The theoretical peak performance of the computer was 23.4 GFLOPS, and the total size of the memories of the system was 128 GB. The node size of the model in the analysis was from 1 to 1 M nodes for the thermal design of the power amplifier 4. RESULTS OF THERMAL ANALYSIS 4.1. Thermal resistance of the power amplifier module Figure 5 shows the influence of the thickness of the GaAs substrate and the PHS layer on the thermal resistance of the power amplifier module with HBT fingers. As shown in fig. 5.1, we found that the thermal resistance of the power amplifier module could be reduced by 5.3 % compared to that of the typical model shown in fig. 5.1, if the thickness of the GaAs substrate was reduced to 75 % of the typical thickness of the GaAs substrate. The thermal resistance of the power amplifier module was positively correlated with the thickness of the GaAs substrate, whereas it was negatively correlated with the thickness of the PHS layer. Figure 5.2 shows that the PHS served as a heat spreader and the in-plane heat diffusion in the PHS layer had a significant effect on the reduction of the thermal resistance of the power amplifier 4.2. Impact of thickness of ceramic layer and misalignment on thermal resistance Figure 6 shows the impact of the number of ceramic layers in the multi-layer PCB on the thermal resistance of the power amplifier In fig. 6, - % means

that the module had no multi-layer PCB and the bottom surface of the heat spreader is isothermal at 273 K. Since the multi-layer PCB shown in fig. 3 has two ceramic layers, -5 % means it has one ceramic layer, and +5 % means it has three ceramic layers. We found that the number of ceramic layers in the multi-layer PCB had the greatest impact on the thermal resistance of the power amplifier The principal flow path of heat in the multi-layer PCB was through the thermal vias. The heat dissipated in the semiconductor substrate diffused one dimensionally through the thermal vias. Therefore, the thermal resistance of the power amplifier module had a linear dependence on the thickness of the multi-layer PCB, i.e., the number of ceramic layers in the multi-layer PCB. We found that effect of the misalignment of GaAs substrate on the heat spreader on the thermal resistance was not as significant as the other evaluation items. Since the heat spreader diffuses heat through the bonding paste- 1 three dimensionally, and the temperature distribution on the top surface of the bonding paste-2 is almost flat even if the location of the GaAs substrate is misaligned, any misalignment of the GaAs substrate seems to have a small effect on the thermal resistance of the power amplifier The flow path of heat in the multi-layer substrate is one-dimensional. Therefore, the misalignment of the thermal vias should have a major effect on the thermal resistance of the power amplifier The degree of the impact of the misalignment of the thermal vias on the thermal resistance depends on the base material of the multi-layer PCB, the production method of the circuit board, and the difference of the thermal conductivity of the base material and the thermal vias. Since most RF module manufacturers procure PCBs for their modules from PCB venders, they are not able to reduce the misalignment of PCB components by themselves. Therefore, improving the robustness of module thermal design will be an important way to reduce the negative effect of misalignment of each component in the 4.3. Impact of evaluation items on thermal resistance Figure 8 shows the impact of each evaluation item on the thermal resistance of the semiconductor The most important factor among these evaluation items was the number of the ceramic layers in the multi-layer PCB. The second most important factor was the thermal conductivity of the bonding paste-1. The thermal conductivity of the bonding paste is important because the impact of the thermophysical properties of the bonding paste can include the influence of the interface thermal resistance between the bonding paste and the bonded material. Even if the thermal conductivity of the bonding material is high enough as a thermally conductive material, the substantive thermal conductivity with the effect of the interface should be considered in the thermal design of the power amplifier We also found that the thermal resistance of the module could be increased to 125 % of that of a typical model. 6 4 2 94.7. 14.3-25% Typical +25% Thickness of GaAs Substrate Bonding Paste -2 & Circuit Board Figure 5.1 Impact of thickness of GaAs substrate 6 4 2 14.3. 98.5-67% Typical +67% Thickness of PHS Figure 5.2 Impact of thickness of PHS Bonding Paste -2 & Circuit Board Figure 5 Impact of thickness of GaAs substrate, PHS on thermal resistance 6 4 2 84.8 93.9. 16. -% -5% Typical +5% Number of Ceramic Layers Bonding Paste -2 & Circuit Board Figure 6 Impact of number of ceramic layer in multilayer PCB on thermal resistance

6 4 2 99.9. 13.6-1% Typical +1% Misalignment of GaAs Substrate Bonding Paste -2 & Circuit Board Figure 7 Impact of misalignment of GaAs substrate on thermal resistance 13 11 9 *1 : BP : Bonding Paste *2 : k : Thermal Conductivity *3 : PKG : Number of Ceramic Layers BM1 BM2 l of BM1 Alignment GaAs,PHS,BP1 *1,BP2 *1,k_ *2 BP1,PKG *3 Total Thickness Alignment Evaluation Items Figure 8 Impact of each evaluation item on thermal resistance of power amplifier modules because the flow path of heat of the thermal vias in the multi-layer PCB is onedimensional. 6. REFERENCES [1] W. Liu, and B. Bayraktaroglu, "Theoretical calculations of temperature and current profiles in multifinger heterojunction bipolar transistors," Solid-State Electronics, Elsevier, Vol. 36, No. 2, pp. 125-132, 1993 [2] W. Liu, "Emitter-length design for microwave power heterojunction bipolar transistors," Solid-State Electronics, Elsevier, Vol. 36, No. 6, pp. 885-89, 1993 [3] W. Liu, "The temperature and current profiles in an emitter finger as a function of the finger length," Solid- State Electronics, Elsevier, Vol. 36, No. 12, pp. 1787-1789, 1993 [4] G. B. Gao, M. Z. Wang, X. Gui, and H. Morkoc, "Thermal design studies of high-power heterojunction bipolar transistors," Trans. IEEE, Electron Devices, IEEE, Vol. 36, No. 5, pp. 854-862, 1989 [5] C. W. Kim, N. Hayama, H. Takahashi, Y. Miyoshi, N. Goto, and K. Honjo, "3-V Operation Power HBTs for Digital Cellular Phones," Trans. IEICE, Electron, IEICE, Japan, E79-C-5, pp. 617-621, 1996 [6] Chary, Ram, Pat Correia, Ravi Nagaraj, and James Song, "Intel Low-Power Technologies Can Extend Battery Life and Improve Device Usability", Technology @Intel magazine, Intel, pp 1-8, 24 September 5. SUMMARY We used FEM to investigate the thermal performance of a power amplifier module that had HBT fingers on a GaAs substrate. The effect on the thermal performance of not only the layout and the shape of the HBT fingers and thickness, and thermal conductivity of each component in the module, but also the misalignment of each component was determined. The results of the FEM simulation showed that that the thickness of GaAs substrate, the thickness of multilayer PCB, and the thermal conductivity of bonding material under the GaAs substrate were the dominant factors in affecting the thermal resistance of the power amplifier The results also showed that the misalignment of GaAs substrate on the heat spreader did not have a major effect on the thermal resistance of the power amplifier The results also showed that the three dimensional shape of thermal vias are important in the thermal design