Present Status of JEFF-3.1 Qualification for LWR. Reactivity and Fuel Inventory Prediction

Similar documents
Improvements of Isotopic Ratios Prediction through Takahama-3 Chemical Assays with the JEFF3.0 Nuclear Data Library

The JEFF Nuclear Data Library

WPEC Sub group 34 Coordinated evaluation of 239 Pu in the resonance region

Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

A PWR ASSEMBLY COMPUTATIONAL SCHEME BASED ON THE DRAGON V4 LATTICE CODE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation

Requests on Nuclear Data in the Backend Field through PIE Analysis

QUALIFICATION OF THE APOLLO 2 ASSEMBLY CODE USING PWR-UO 2 ISOTOPIC ASSAYS.

CASMO-5/5M Code and Library Status. J. Rhodes, K. Smith, D. Lee, Z. Xu, & N. Gheorghiu Arizona 2008

Coordinated evaluation of 239Pu in the resonance region

VALMOX VALIDATION OF NUCLEAR DATA FOR HIGH BURNUP MOX FUELS

Decay heat calculations. A study of their validation and accuracy.

SPentfuel characterisation Program for the Implementation of Repositories

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO

A Deterministic against Monte-Carlo Depletion Calculation Benchmark for JHR Core Configurations. A. Chambon, P. Vinai, C.

PROPOSAL OF INTEGRAL CRITICAL EXPERIMENTS FOR LOW-MODERATED MOX FISSILE MEDIA

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

A.BIDAUD, I. KODELI, V.MASTRANGELO, E.SARTORI

THE VALMONT EXPERIMENTAL PROGRAMME FOR THE NEUTRONICS QUALIFICATION OF THE UMO/AL FUEL FOR THE JULES-HOROWITZ-REACTOR

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Validation of Nuclear Data for High Burn-up MOX Fuels (VALMOX) Servais PILATE, Benoît LANCE, Hélène GABAIEFF Belgonucléaire S.A.

Technical workshop : Dynamic nuclear fuel cycle

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

THE NEXT GENERATION WIMS LATTICE CODE : WIMS9

MOx Benchmark Calculations by Deterministic and Monte Carlo Codes

MINOR ACTINIDES TRANSMUTATION STUDIES AT CEA: SOME REACTOR PHYSICS ASPECTS. M. SALVATORES CEA/DRN/DER/SPRC CEN Cadarache, France

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium

MA/LLFP Transmutation Experiment Options in the Future Monju Core

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS

Prototypes and fuel cycle options including transmutation

A Dummy Core for V&V and Education & Training Purposes at TechnicAtome: In and Ex-Core Calculations

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT

Comparison of PWR burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results. Abstract

Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems

Impact of Photon Transport on Power Distribution

Reduction of Radioactive Waste by Accelerators

ADVANCED PLUTONIUM PWR FUEL ASSEMBLIES R&D IN FRANCE. D. Warin, JC. Gauthier, L. Brunel, JL. Guillet

Radiochemistry in reactor

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING

Ciclo combustibile, scorie, accelerator driven system

REACTOR PHYSICS CALCULATIONS ON MOX FUEL IN BOILING WATER REACTORS (BWRs)

Neutronics of MAX phase materials

CESAR5.3: ISOTOPIC DEPLETION FOR RESEARCH AND TESTING REACTOR DECOMMISSIONING

Assessment of the MCNP-ACAB code system for burnup credit analyses

REVIEW OF RESULTS FOR THE OECD/NEA PHASE VII BENCHMARK: STUDY OF SPENT FUEL COMPOSITIONS FOR LONG-TERM DISPOSAL

MUSE-4 BENCHMARK CALCULATIONS USING MCNP-4C AND DIFFERENT NUCLEAR DATA LIBRARIES

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

Available online at ScienceDirect. Energy Procedia 71 (2015 )

The JEFF-3.0 Nuclear Data Library

Incineration of Plutonium in PWR Using Hydride Fuel

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

WHY A CRITICALITY EXCURSION WAS POSSIBLE IN THE FUKUSHIMA SPENT FUEL POOLS

Activities of the OECD/ NEA Expert Group on Assay Data for Spent Nuclear Fuel

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities

Status and future plan of JENDL. Osamu Iwamoto Nuclear Data Center Japan Atomic Energy Agency

DESIGN OF B 4 C BURNABLE PARTICLES MIXED IN LEU FUEL FOR HTRS

Core Physics Second Part How We Calculate LWRs

First ANDES annual meeting

Radioactive Inventory at the Fukushima NPP

BENCHMARK CALCULATIONS FOR VVER-1000 FUEL ASSEMBLIES USING URANIUM OR MOX FUEL

The Nuclear Heating Calculation Scheme For Material Testing in the Future Jules Horowitz Reactor

Chapter 6 Development of the Method to Assay Barely Measurable Elements in Spent Nuclear Fuel and Application to BWR 9 9 Fuel

USE OF LATTICE CODE DRAGON IN REACTOR CALUCLATIONS

Challenges in Prismatic HTR Reactor Physics

Some thoughts on Fission Yield Data in Estimating Reactor Core Radionuclide Activities (for anti-neutrino estimation)

PROPAGATION OF NUCLEAR DATA UNCERTAINTIES IN FUEL CYCLE USING MONTE-CARLO TECHNIQUE

Document ID Author Harri Junéll. Version 1.0. Approved by Ulrika Broman Comment Reviewed according to SKBdoc

The Lead-Based VENUS-F Facility: Status of the FREYA Project

MOx Depletion Calculation

Analytical Validation of Uncertainty in Reactor Physics Parameters for Nuclear Transmutation Systems

VALIDATION OF VISWAM SQUARE LATTICE MODULE WITH MOX PIN CELL BENCHMARK

Testing of Nuclear Data Libraries for Fission Products

Improved time integration methods for burnup calculations with Monte Carlo neutronics

Sensitivity and Uncertainty Analysis Methodologies for Fast Reactor Physics and Design at JAEA

Effect of Axial Burnup on Power Distribution and Isotope Inventory for a PWR Fuel Assembly

Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Lesson 14: Reactivity Variations and Control

PLUTONIUM RECYCLING IN PRESSURIZED WATER REACTORS: INFLUENCE OF THE MODERATOR-TO-FUEL RATIO

Chapter 5: Applications Fission simulations

Nuclear Fuel Cycle and WebKOrigen

Karlsruhe, 3th April 2012

Technical note on using JEFF-3.1 and JEFF data to calculate neutron emission from spontaneous fission and (α,n) reactions with FISPIN.

STATUS OF TRANSMUTATION STUDIES IN A FAST REACTOR AT JNC

In collaboration with NRG

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

MULTI-RECYCLING OF TRANSURANIC ELEMENTS IN A MODIFIED PWR FUEL ASSEMBLY. A Thesis ALEX CARL CHAMBERS

On the Use of Serpent for SMR Modeling and Cross Section Generation

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

NEUTRONIC ANALYSIS OF HE-EFIT EFIT ADS - SOME RESULTS -

Transcription:

Present Status of JEFF-3.1 Qualification for LWR Reactivity and Fuel Inventory Prediction Experimental Validation Group (CEA Cadarache/Saclay) D. BERNARD david.bernard@cea.fr A. COURCELLE arnaud.courcelle@cea.fr N. HFAEIDH noureddine.hfaeidh@cea.fr O. LITAIZE olivier.litaize@cea.fr S. MENGELLE stephane.mengelle@cea.fr A. SANTAMARINA alain.santamarina@cea.fr T. SARGENI antonio.sargeni@cea.fr C. VAGLIO-GAUDARD claire.vaglio-gaudard@cea.fr J.F. VIDAL jean-francois.vidal@cea.fr

Summary: B 2 m and k eff experimental validation for UO 2 and MOx lattices at Beginning of Cycle Fuel Inventory Prediction using JEFF-3.1

LWR mock-up in EOLE Facility (EPICURE-MOx Lattice) Material Buckling Experimental Validation: Pin cell calculation EPICURE UH-1.2 MISTRAL-1 MISTRAL-2 MISTRAL-3 UO X ( 235 U: 3.7% (w/o)) UO X ( 235 U: 3.7% (w/o)) MO X (7% Pu content) MO X (7% Pu content) : 1,26cm R m =1,2 : 1,32cm R m =1,7 : 1,32cm R m =1,7 : 1,39cm R m =2,0 Experiment 0 ± 400 0 ± 500 0 ± 350 0 ± 350 APOLLO2 B 2 m (pcm) JEF-2.2 449-222 74 308 JEFF-3.1 2-552 118 310 Technological and experimental uncertainties

k eff Experimental Validation («homogeneous» core with regular lattice) Whole Core Calculation EPICURE UH-1.2 MISTRAL-1 MISTRAL-2 MISTRAL-3 k eff values UO X ( 235 U: 3.7% (w/o)) UO X ( 235 U: 3.7% (w/o)) MO X (7% Pu content) MO X (7% Pu content) : 1,26cm R m =1,2 : 1,32cm R m =1,7 : 1,32cm R m =1,7 : 1,39cm R m =2,0 Experiment 1,00055 1,00109 1,00060 1,00057 APOLLO2 JEF-2.2 1,00603 1,00522 1,00732 1,00818 JEFF-3.1 1,00176 1,00220 1,00793 1,00809 TRIPOLI4 JEFF-3.1 1,0028 (2) 1,0026 (2) 1,0072 (2) 1,0081 (2)

k eff Experimental Validation («homogeneous» core with regular lattice) Whole Core Calculation EPICURE UH-1.2 MISTRAL-1 MISTRAL-2 MISTRAL-3 k eff values UO X ( 235 U: 3.7% (w/o)) UO X ( 235 U: 3.7% (w/o)) MO X (7% Pu content) MO X (7% Pu content) : 1,26cm R m =1,2 : 1,32cm R m =1,7 : 1,32cm R m =1,7 : 1,39cm R m =2,0 Experiment 1,00055 1,00109 1,00060 1,00057 APOLLO2 JEF-2.2 1,00603 1,00522 1,00732 1,00818 JEFF-3.1 1,00176 1,00220 1,00793 1,00809 TRIPOLI4 JEFF-3.1 1,0028 (2) 1,0026 (2) 1,0072 (2) 1,0081 (2) ρ (JEF-2.2 JEFF-3.1) UOx components: ρ (JEF-2.2 JEFF-3.1) MOx components: - 400pcm : 235 U +200pcm : 238 U - 100pcm : 9i Zr - 300pcm XS S(α,β) +130pcm : 238 U +110pcm : 239 Pu +160pcm : 240 Pu - 180pcm : 241 Pu - 330pcm : 241 Am - 80pcm : 9i Zr +150pcm :H 2 O 0pcm

k eff Experimental Validation («homogeneous» core with regular lattice) Whole Core Calculation EPICURE UH-1.2 MISTRAL-1 MISTRAL-2 MISTRAL-3 k eff values UO X ( 235 U: 3.7% (w/o)) UO X ( 235 U: 3.7% (w/o)) MO X (7% Pu content) MO X (7% Pu content) : 1,26cm R m =1,2 : 1,32cm R m =1,7 : 1,32cm R m =1,7 : 1,39cm R m =2,0 Experiment 1,00055 1,00109 1,00060 1,00057 APOLLO2 JEF-2.2 1,00603 1,00522 1,00732 1,00818 JEFF-3.1 1,00176 1,00220 1,00793 1,00809 TRIPOLI4 JEFF-3.1 1,0028 (2) 1,0026 (2) 1,0072 (2) 1,0081 (2) Reactivity of LWR-UOx cores well predicted (+100 ± 200pcm) Reactivity of 100% MOx cores overestimated (+700 ± 300pcm)

Reactivity effect of zirconium-isotopes evaluations (vs JEF-2.2 natural element evaluation) nat Zr 90, 91, 92, 94, 96 Zr MISTRAL-2 (MOx): APOLLO2: ρ(nat/iso) = - 92pcm TRIPOLI4: ρ(nat/iso) = - 80pcm (30)

Reactivity effect of zirconium-isotopes evaluations (vs JEF-2.2 natural element evaluation) nat Zr 90, 91, 92, 94, 96 Zr MISTRAL-2 (MOx): APOLLO2: ρ(nat/iso) = - 92pcm TRIPOLI4: ρ(nat/iso) = - 80pcm (30) Mainly due to 91 Zr (n,γ) modification, particularly in the 292eV resonance

Post Irradiation Experiment UOx Spent Fuel Inventory Experimental Validation using JEFF-3.1: Comparison between Depletion Calculations and Spent Fuel Radio-chemical Assays

Post Irradiation Experiment GRAVELINES PWR 3 fuel rods 235 U 4.5% (w/o) 60GWd/t C/E - 1 (%) JEF-2.2 C/E - 1 (%) JEFF-3.1 Experimental Uncertainties (δ E/E) 234 U/ 238 U 1,8 4,3 3,0 235 UI γ 236 U/ 238 U -4,2-0,7 0,6 235 U/ 238 U 4,6 2,1 3,5 237 Np/ 238 U -6,5-1,3 3,2 N 236U 238 U(n,γ) XS + 238 U(n,2n) 238 Pu/ 238 U -10,2-9,0 3,7 239 Pu/ 238 U 1,4 0,4 1,3 240 Pu/ 238 U -0,7 0,4 1,1 241 Pu/ 238 U -2,3-3,0 1,6 242 Pu/ 238 U -8,6-3,1 2,8 241 Am/ 238 U (EOI) 5,8 0,1 5,0 242M Am/ 238 U -21,6 2,3 7,1 243 Am/ 238 U -8,7-2,4 4,4 243 Cm/ 238 U -19,2-26,5 6,3 244 Cm/ 238 U -16,8-11,2 4,3 (Γγ) 241 Pu 0.26eV 245 Cm/ 238 U -17,8-17,9 5,9 246 Cm/ 238 U -29,2-32,2 7,0 247 Cm/ 238 U -16,0-1,3 9,6 143 Nd/ 238 U 1,4-0,7 1,2 241 Am(n,γ) XS & Isomeric Ratio 144 Nd/ 238 U -2,1-0,5 3,1 145 Nd/ 238 U -0,4-0,4 1,5 146 Nd/ 238 U 0,9 1,3 2,4 148 Nd/ 238 U 1,5 1,4 2,1 150 Nd/ 238 U 0,7 0,7 2,3 FP fission yields 133 Cs/ 238 U -4,4-3,2 1,3 134 Cs/ 238 U -0,7-1,9 2,4 135 Cs/ 238 U -3,8-4,9 2,6 137 Cs/ 238 U -5,8-6,4 2,1

Conclusion Preliminary JEFF-3.1 qualification results : k eff prediction for : LWR-UOx : (C JEFF-3.1 E) = +100 ± 200pcm (JEF-2.2: +480pcm) LWR-MOx : (C JEFF-3.1 E) = +700 ± 300pcm (JEF-2.2: +710pcm) PIE prediction for UOx fuels is improved thanks to 235,238 U, 241 Pu, 241 Am XS and isomeric ratios evaluations. Additional work is needed : PIE prediction for MOx fuels Reactivity loss in depletion (UOx and MOx spent fuel oscillations in MINERVE Facility) Separated isotopes oscillation (2% accuracy) is in progress: OSMOSE: actinides from 232 Th to Cm OCEAN: neutronic absorbers (Gd + Hf + Er )