Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors

Size: px
Start display at page:

Download "Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors"

Transcription

1 Fuel cycle studies on minor actinide transmutation in Generation IV fast reactors M. Halász, M. Szieberth, S. Fehér Budapest University of Technology and Economics, Institute of Nuclear Techniques

2 Contents Introduction The FITXS burn-up method GFR-LWR and LFR-LWR fuel cycle studies The Gas-cooled Fast Reactor (GFR) and Lead-cooled Fast reactor (LFR) models GFR-ER symbiotic fuel cycle studies The European ressurized Reactor (ER) model Analysis of the neutron economies Conclusions 2

3 Introduction Fast spectrum reactors: The average neutron yield per fission increases with energy σ f /σ a increases with energy Higher uranium utilization ratio and more favourable waste composition Role of fuel cycle simulation codes: Assistance in strategic decisions Classification of waste: isotopic composition, decay heat, radiotoxicity Infrastructural issues: reprocessing capacity, storages, etc. Spent fuel composition of the reactors has to be calculated 3

4 Determination of the spent fuel composition The equation system which describes the evolution of the fuel composition: d N( t) dt = AN( t) ( λ σφ) N( t) Difficulty: σ σ( N( t)), Φ Φ( N( t)) The neutron spectrum changes with the isotopic composition therefore influencing the one-group averaged cross-sections and the integrated neutron flux. Usual approximations: Burn-up tables Cross-section libraries for specific burn-up arametrization of cross-sections 4

5 The FITXS method Idea: parametrization of the one-group averaged cross-sections as functions of the detailed fuel composition Selection of fitting parameters reparation of cross-section database Cross-section + k eff fitting Selection of fitting parameters: actinides with significant contribution to the reaction rates + overall quantity of fission products parameters reparation of cross-section database: numerous (few thousand) core calculations with randomly sampled fuel compositions Cross-section + k eff fitting: σ σ( N 1,..., Nn) a 0 j a j N j j, k a jk N j N k M. Szieberth, M. Halász, S. Fehér, T. Reiss, Simulation of fuel cycles with minor actinide management using a fast burnup calculation tool in: roc. of HYSOR 2014, Kyoto, apan, 28 September 3 October 2014 M. Szieberth, M. Halász, T. Reiss, S. Fehér: Fuel cycle studies on minor actinide burning in gas cooled fast reactors" in: roc. of Fast Reactors and Related Fuel Cycles, aris, France, March 2013 (FR13) 5

6 The Gas-cooled Fast Reactor (GFR) model 3D SCALE model of the GFR2400 core (T. Reiss) Homogenized inner and outer core fuel assemblies with different u content Random compositions with the following constraints: Homogeneous MA and F load u inner /u outer = 0,8 0-10% MA content, 10-25% u content, the rest is U Fission products with average relative composition Isotopic compositions of actinide elements are also randomly sampled 6

7 The Lead-cooled Fast Reactor (LFR) model reliminary calculations for the analysis of the ELSY (European Lead-cooled SYstem) core 3D SCALE fuel assembly model in infinite lattice Random compositions with the following constraints: Average fuel composition 0-10% MA content, 13-22% u content, the rest is U Fission products with average relative composition Isotopic compositions of actinide elements are also randomly sampled 7

8 Fitting results The fitted polynomials can describe the cross-sections and k eff with an average error well below 1% 239 u (n,f) cross-section (GFR) 8

9 Fitting results The fitting errors have mean values close to zero, and are related to the statistical uncertainties of the Monte Carlo transport calculations 239 u (n,f) cross-section (GFR) Fitting errors vs. statistical uncertainties 9

10 Verification of the burn-up models Burn-up calculations using the fitted cross-sections are in excellent agreement with SCALE based burn-up results with less than 0,1% error for main isotopes 10

11 GFR-LWR and LFR-LWR fuel cycle studies The developed burn-up models were integrated into a fuel cycle models containing fast reactors and conventional Light Water Reactors (LWRs) 11

12 GFR and LFR closed fuel cycle results GFR End-of-Cycle u content u feed from LWRs No external u feed is needed in the equilibrium GFR reaches self-breeding The u content of the core increases to counterweight the decrease of fissile u 12

13 GFR and LFR closed fuel cycle results LFR End-of-Cycle u content u feed from LWRs The LFR also reaches breakeven breeding Both reactors are able to breed their fuel from fertile 238 U 13

14 GFR and LFR closed fuel cycle results GFR End-of-Cycle MA content LFR End-of-Cycle MA content Both the GFR and LFR reaches an equilibrium MA content of 1% with no Cm accummulation Every minor actinide isotope can be burned in the hard neutron spectrum of the GFR and LFR 14

15 GFR and LFR closed fuel cycle results GFR MA consumption LFR MA consumption The GFR and LFR are able to burn additional minor actinides from LWRs if more MAs are fed to the core than the equilibrium MA content 15

16 GFR and LFR closed fuel cycle results Minor actinide waste due to reprocessing losses (GFR left, LFR right) The MA burning capabilities of the reactors highly exceed the MA waste production from partitioning losses Nevertheless, the partitioning technology has main impact on the final waste 16

17 GFR and LFR closed fuel cycle results GFR breeding gain LFR breeding gain Higher MA content of the GFR and LFR cores results in higher breeding gain This effect can be explained by the analysis of the neutron economy 17

18 The European ressurized Reactor (ER) model Generation III Light Water Reactor Goal: investigation of the recycling of excess u produced by the FRs in Light Water Reactors 3D SCALE fuel assembly model in infinite lattice Random compositions with the following constraints: Average fuel composition 5-10% u content, 0-1% MA content, the rest is U Fission product composition fitted as function of assembly burnup + Xe, Sm calculated explicitly Isotopic compositions of actinide elements are also randomly sampled 18

19 GFR-ER symbiotic fuel cycle studies The u produced by the GFR is recycled in ER MOX fuel assemblies, and the spent MOX u is recycled in the GFR 19

20 GFR-ER symbiotic fuel cycle results GFR End-of-Cycle MA content GFR End-of-Cycle u composition The GFR is able to burn the minor actinides from the spent MOX fuel, but the recycling of the excess u results in high MA content and lower fissile u ratio Transmutational capabilities and possibly safety parameters degraded 20

21 Analysis of the neutron economies Motivation: deeper understanding of fuel breeding and transmutation capabilities D-value = neutron consumption / fission (M. Salvatores, 1993) where R D i 1 { R i 1 i 1i 2 [ R k 1 i 1i 3 (...)]} n 2 3 (n, γ), decay, (n,f), (n,2n). Neutron consumption of the fuel: k 1 i leakage 1 i n, a f 1 construction materials i breeding / transmutation D FUEL D S D ( L CM ) ext M. Salvatores et al: A Global hysics Approach to Transmutation of Radioactive Nuclei, Nuclear Science and Engineering Vol. 116, 1994, pp FUEL D A 21

22 22 Analysis of the neutron economies The evaluation of the D-values requires the consideration of every possible transmutational chains, making the calculation difficult k n n i i k i i i i R R D (...)]} [ {

23 Analysis of the neutron economies Based on the theory of Markov-chains we derived a closed formula for the neutron consumption / production Transition probability matrix: ( t0, t1 ) ( t) xy xy ( t ) xy, (0) I The neutron production can be expressed as one step plus the neutron production of the next nuclide in the chain: n D x ~ ~ xy xy 1 2 n n D xy D xy 1 2,, xy xy 1 2 probability probability xy xy x, a f xy x x Tower rule + conditional expectation value: ~ ˆ D n D v ~ xx 1, ~ xy xy, v D x xf ~ xf y R xy ~ xy 23

24 Analysis of the neutron economies Neutron production of actinide isotopes in the two examined fast reactor types Isotope Neutron production / fission GFR LFR 235 U U Np u u u u u Am m Am Am Cm Cm Cm

25 Analysis of the neutron economies Neutron production of actinide isotopes with respect to number of transitions MA isotopes are fertile if not fissile in the hard neutron spectrum of the GFR High MA content increases the total neutron production therefore improves breeding capabilities 25

26 Analysis of the neutron economies Time-dependent neutron productions based on continuous-time Markov-chain 237 Np 243 Am The time-dependency of the average neutron productions also shows the fertile nature of otherwise absorbing minor actinides 26

27 The SITON code The method has been also implemented in the SITON nuclear fuel cycle simulation code developed in the Hungarian National Academy of Sciences. SITON v2.0 is a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. Also, SITON v2.0 is involved in the Benchmark Study on Nuclear Fuel Cycle Transition Scenarios Analysis Codes organized by the OECD Working arty on Scientific Issues of the Fuel Cycle (WFC) Á. Brolly et al.: hysical model of the nuclear fuel cycle simulation code SITON, in Annals of Nuclear Energy (2016) 27

28 Summary GFR, LFR and ER MOX burn-up models were developed with the FITXS method GFR-LWR and LFR-LWR fuel cycles were investigated with and without MOX recycling in ER MOX fuel assemblies Both the GFR and the LFR is able to operate with u from LWR spent fuel An equilibrium MA content of 1% is reached during closed cycle operation, and both FRs are capable of burning additional MAs from LWR spent fuel MOX u recycling in ERs results in significant deterioration of the u isotopic composition, as well as higher equilibrium MA content Higher MA content results in higher breeding gain due to fertile nature of MA isotopes in fast neutron spectrum Although MOX recycling increases uranium utilization ratio compared to FR-LWR fuel cycle, higher MA content and worse u composition suggest that recycling of excess u would be more favourable in FRs 28

29 Thank you for your attention! 29

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

Ciclo combustibile, scorie, accelerator driven system

Ciclo combustibile, scorie, accelerator driven system Ciclo combustibile, scorie, accelerator driven system M. Carta, C. Artioli ENEA Fusione e Fissione Nucleare: stato e prospettive sulle fonti energetiche nucleari per il futuro Layout of the presentation!

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region J.N. Wilson Institut de Physique Nucléaire, Orsay Talk Plan Talk Plan The importance of innovative nuclear

More information

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING

ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING ASSESSMENT OF THE EQUILIBRIUM STATE IN REACTOR-BASED PLUTONIUM OR TRANSURANICS MULTI-RECYCLING T.K. Kim, T.A. Taiwo, J.A. Stillman, R.N. Hill and P.J. Finck Argonne National Laboratory, U.S. Abstract An

More information

(CE~RN, G!E21ZZMA?ZOEWSPRC)

(CE~RN, G!E21ZZMA?ZOEWSPRC) DRN PROGRAM ON LONG-LIVED WASTE TRANSMUTATION STUDIES : TRANSMUTATION POTENTIAL OF CURRENT AND INNOVATIVE SYSTEMS M. Salvatores, A. Zaetta, C. Girard, M. Delpech, I. Slessarev, J. Tommasi (CE~RN, G!E21ZZMA?ZOEWSPRC)

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 )

Available online at   ScienceDirect. Energy Procedia 71 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 97 105 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 High-Safety Fast Reactor Core Concepts

More information

Prototypes and fuel cycle options including transmutation

Prototypes and fuel cycle options including transmutation A S T R I D Prototypes and fuel cycle options including transmutation General introduction, GEN IV fast reactors Transmutation demonstration Fuel cycle Conclusions www.cea.fr DEN/CAD/DER/CPA Jean-Paul

More information

External neutrons sources for fissionbased

External neutrons sources for fissionbased External neutrons sources for fissionbased reactors S. David, CNRS/IN2P3/IPN Orsay sdavid@ipno.in2p3.fr S. David,external neutron source for fission-based reactors, IZEST, Orsay, Nov 2017 1 World Energy

More information

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract

TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS. Abstract TRANSMUTATION OF AMERICIUM AND CURIUM: REVIEW OF SOLUTIONS AND IMPACTS M. Delpech, J. Tommasi, A. Zaetta DER/SPRC, CEA M. Salvatores DRN/PP, CEA H. Mouney EDF/DE G. Vambenepe EDF/SEPTEN Abstract Several

More information

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS

PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS PWR AND WWER MOX BENCHMARK CALCULATION BY HELIOS Radoslav ZAJAC 1,2), Petr DARILEK 1), Vladimir NECAS 2) 1 VUJE, Inc., Okruzna 5, 918 64 Trnava, Slovakia; zajacr@vuje.sk, darilek@vuje.sk 2 Slovak University

More information

Technical workshop : Dynamic nuclear fuel cycle

Technical workshop : Dynamic nuclear fuel cycle Technical workshop : Dynamic nuclear fuel cycle Reactor description in CLASS Baptiste LENIAU* Institut d Astrophysique de Paris 6-8 July, 2016 Introduction Summary Summary The CLASS package : a brief overview

More information

Comparison of U-Pu and Th-U cycles in MSR

Comparison of U-Pu and Th-U cycles in MSR WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Jiri Krepel :: Advanced Nuclear System Group :: Paul Scherrer Institut Comparison of U-Pu and Th-U cycles in MSR ThEC 2018 conference 29-31. October 2018, Brussels,

More information

MA/LLFP Transmutation Experiment Options in the Future Monju Core

MA/LLFP Transmutation Experiment Options in the Future Monju Core MA/LLFP Transmutation Experiment Options in the Future Monju Core Akihiro KITANO 1, Hiroshi NISHI 1*, Junichi ISHIBASHI 1 and Mitsuaki YAMAOKA 2 1 International Cooperation and Technology Development Center,

More information

Nuclear Fuel Cycle and WebKOrigen

Nuclear Fuel Cycle and WebKOrigen 10th Nuclear Science Training Course with NUCLEONICA Institute of Nuclear Science of Ege University, Cesme, Izmir, Turkey, 8th-10th October 2008 Nuclear Fuel Cycle and WebKOrigen Jean Galy European Commission

More information

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS

NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS NEUTRON PHYSICAL ANALYSIS OF SIX ENERGETIC FAST REACTORS Peter Vertes Hungarian Academy of Sciences, Centre for Energy Research ABSTRACT Numerous fast reactor constructions have been appeared world-wide

More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information INTRODUCTION WHAT FAST REACTORS CAN DO Chain Reactions Early in 1939 Meitner and Frisch suggested that the correct interpretation of the results observed when uranium is bombarded with neutrons is that

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA

THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA THE INTEGRATION OF FAST REACTOR TO THE FUEL CYCLE IN SLOVAKIA Radoslav ZAJAC, Petr DARILEK VUJE, Inc. Okruzna 5, SK-91864 Trnava, Slovakia Tel: +421 33 599 1316, Fax: +421 33 599 1191, Email: zajacr@vuje.sk,

More information

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT)

TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) 15 th International Conference on Nuclear Engineering Nagoya, Japan, April 22-26, 2007 ICONE15-10515 TRANSMUTATION PERFORMANCE OF MOLTEN SALT VERSUS SOLID FUEL REACTORS (DRAFT) Björn Becker University

More information

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA)

IAEA-TECDOC Nuclear Fuel Cycle Simulation System (VISTA) IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 IAEA-TECDOC-1535 Nuclear Fuel Cycle Simulation System (VISTA) February 2007 The originating Section of this publication in the

More information

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS TRANSMUTATION OF CESIUM-3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki O-arai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun,

More information

Reduction of Radioactive Waste by Accelerators

Reduction of Radioactive Waste by Accelerators October 9-10, 2014 International Symposium on Present Status and Future Perspective for Reducing Radioactive Waste - Aiming for Zero-Release - Reduction of Radioactive Waste by Accelerators Hiroyuki Oigawa

More information

Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons )

Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons ) Study on Nuclear Transmutation of Nuclear Waste by 14 MeV Neutrons ) Takanori KITADA, Atsuki UMEMURA and Kohei TAKAHASHI Osaka University, Graduate School of Engineering, Division of Sustainable Energy

More information

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR)

Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) R&D Needs in Nuclear Science 6-8th November, 2002 OECD/NEA, Paris Working Party on Pu-MOX fuel physics and innovative fuel cycles (WPPR) Hideki Takano Japan Atomic Energy Research Institute, Japan Introduction(1)

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles

New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. XYZ New Developments in Actinides Burning with Symbiotic LWR- HTR-GCFR Fuel Cycles Eleonora Bomboni 1 1 Department of Mechanical, Nuclear

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

DETERMINATION OF THE EQUILIBRIUM COMPOSITION OF CORES WITH CONTINUOUS FUEL FEED AND REMOVAL USING MOCUP

DETERMINATION OF THE EQUILIBRIUM COMPOSITION OF CORES WITH CONTINUOUS FUEL FEED AND REMOVAL USING MOCUP Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DETERMINATION OF THE EQUILIBRIUM COMPOSITION

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Neutronic evaluation of thorium-uranium fuel in heavy water research reactor HADI SHAMORADIFAR 1,*, BEHZAD TEIMURI 2, PARVIZ PARVARESH 1, SAEED MOHAMMADI 1 1 Department of Nuclear physics, Payame Noor

More information

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor

3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor 3.12 Development of Burn-up Calculation System for Fusion-Fission Hybrid Reactor M. Matsunaka, S. Shido, K. Kondo, H. Miyamaru, I. Murata Division of Electrical, Electronic and Information Engineering,

More information

KYT2018 TECHNOLOGIES IN NUCLEAR WASTE MANAGEMENT

KYT2018 TECHNOLOGIES IN NUCLEAR WASTE MANAGEMENT KYT2018 TECHNOLOGIES IN NUCLEAR WASTE MANAGEMENT KYT2018 midterm seminar, April 7 th, 2017 Finlandia Hall, Helsinki RESEARCH CONTINUATION KYT2018 Technologies in nuclear waste management Advanced fuel

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

Study on SiC Components to Improve the Neutron Economy in HTGR

Study on SiC Components to Improve the Neutron Economy in HTGR Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute

More information

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances

Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Error Estimation for ADS Nuclear Properties by using Nuclear Data Covariances Kasufumi TSUJIMOTO Center for Proton Accelerator Facilities, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor

The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor The Closed Nuclear Fuel Cycle for the Gas Cooled Fast Reactor David van der Stok Supervisors: dr. ir. J.L. Kloosterman, dr. ir. W.F.G. van Rooijen and G. van Gendt Reactor Physics Department Faculty of

More information

Analysis of the Neutronic Characteristics of GFR-2400 Fast Reactor Using MCNPX Transport Code

Analysis of the Neutronic Characteristics of GFR-2400 Fast Reactor Using MCNPX Transport Code Amr Ibrahim, et al. Arab J. Nucl. Sci. Appl, Vol 51, 1, 177-188 The Egyptian Arab Journal of Nuclear Sciences and Applications (2018) Society of Nuclear Vol 51, 1, (177-188) 2018 Sciences and Applications

More information

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses 35281 NCSD Conference Paper #2 7/17/01 3:58:06 PM Computational Physics and Engineering Division (10) Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses Charlotta

More information

Question to the class: What are the pros, cons, and uncertainties of using nuclear power?

Question to the class: What are the pros, cons, and uncertainties of using nuclear power? Energy and Society Week 11 Section Handout Section Outline: 1. Rough sketch of nuclear power (15 minutes) 2. Radioactive decay (10 minutes) 3. Nuclear practice problems or a discussion of the appropriate

More information

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394 F. Franceschini 1, C. Fiorina 2,4, M. Huang 3, B. Petrovic 3, M. Wenner 1, J. Krepel 4 1 Westinghouse Electric Company, Cranberry Township,

More information

MOx Benchmark Calculations by Deterministic and Monte Carlo Codes

MOx Benchmark Calculations by Deterministic and Monte Carlo Codes MOx Benchmark Calculations by Deterministic and Monte Carlo Codes G.Kotev, M. Pecchia C. Parisi, F. D Auria San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa via Diotisalvi 2, 56122

More information

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BRN-P CALCLATIONS O. Cabellos, D. Piedra, Carlos J. Diez Department of Nuclear Engineering, niversidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed. Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zero-energy neutrons. Q for 238 U + n 239 U is 4.???

More information

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS

VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS VERIFICATION OFENDF/B-VII.0, ENDF/B-VII.1 AND JENDL-4.0 NUCLEAR DATA LIBRARIES FOR CRITICALITY CALCULATIONS USING NEA/NSC BENCHMARKS Amine Bouhaddane 1, Gabriel Farkas 1, Ján Haščík 1, Vladimír Slugeň

More information

Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements

Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements Nuclear Data for Innovative Fast Reactors: Impact of Uncertainties and New Requirements G.Palmiotti 1, M.Salvatores 1, 2, M. Assawaroongruengchot 1 1 Idaho National Laboratory, 2525 Fremont Ave. P.O. Box

More information

Assessment of the MCNP-ACAB code system for burnup credit analyses

Assessment of the MCNP-ACAB code system for burnup credit analyses Assessment of the MCNP-ACAB code system for burnup credit analyses N. García-Herranz, O. Cabellos, J. Sanz UPM - UNED International Workshop on Advances in Applications of Burnup Credit for Spent Fuel

More information

On the Use of Serpent for SMR Modeling and Cross Section Generation

On the Use of Serpent for SMR Modeling and Cross Section Generation On the Use of Serpent for SMR Modeling and Cross Section Generation Yousef Alzaben, Victor. H. Sánchez-Espinoza, Robert Stieglitz INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR) KIT The Research

More information

Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR

Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR Recycling Spent Nuclear Fuel Option for Nuclear Sustainability and more proliferation resistance In FBR SIDIK PERMANA a, DWI IRWANTO a, MITSUTOSHI SUZUKI b, MASAKI SAITO c, ZAKI SUUD a a Nuclear Physics

More information

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E)

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Xue-Ming Shi Xian-Jue Peng Institute of Applied Physics and Computational Mathematics(IAPCM), BeiJing, China December

More information

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation SUB Hamburg by Gunther KeBler A 2012/7138 Scientific Publishing id- Contents 1 Nuclear Proliferation and IAEA-Safeguards

More information

The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost

The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost ECE_Energy for High-Tech Society 1 The Diablo Canyon NPPT produces CO 2 -free electricity at half the state s (CA) average cost Nuclear Energy: Power for a High-Tech Society ECE_Energy for High-Tech Society

More information

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy Xueming Shi 1, Xi Wang, Xianjue Peng 1) Institute of Applied Physics and Computational Mathematics Corresponding author: sxm_shi@iapcm.ac.cn

More information

THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT

THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT THE MULTIREGION MOLTEN-SALT REACTOR CONCEPT Gyula Csom, Sándor Fehér, Máté Szieberth and Szabolcs Czifrus Budapest University of Technology and Economics, Hungary Abstract The molten-salt reactor MSR)

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium The REBUS Experimental Programme for Burn-up Credit Peter Baeten (1)*, Pierre D'hondt (1), Leo Sannen (1), Daniel Marloye (2), Benoit Lance (2), Alfred Renard (2), Jacques Basselier (2) (1) SCK CEN, Boeretang

More information

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE

English text only NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE Unclassified NEA/NSC/DOC(2007)9 NEA/NSC/DOC(2007)9 Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 14-Dec-2007 English text

More information

ESTIMATION OF MAXIMUM PERMISSIBLE STEP LOSSES IN P&T PROCESSING

ESTIMATION OF MAXIMUM PERMISSIBLE STEP LOSSES IN P&T PROCESSING ESTIMATION OF MAXIMUM PERMISSIBLE STEP LOSSES IN P&T PROCESSING Jan-Olov Liljenzin Nuclear Chemistry, Department of Chemical and Biological Engineering Chalmers University of Technology, Gothenburg, Sweden

More information

Closing the nuclear fuel cycle

Closing the nuclear fuel cycle Closing the nuclear fuel cycle Potential of the Gas Cooled Fast Reactor (GCFR) Godart van Gendt Physics of Nuclear Reactors (PNR) Department of R3 Faculty TNW TU Delft Supervisors: Dr. ir. W.F.G. van Rooijen

More information

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b.

Nuclear Fission. 1/v Fast neutrons. U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Nuclear Fission 1/v Fast neutrons should be moderated. 235 U thermal cross sections σ fission 584 b. σ scattering 9 b. σ radiative capture 97 b. Fission Barriers 1 Nuclear Fission Q for 235 U + n 236 U

More information

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme.

Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. Journal of Physics: Conference Series PAPER OPEN ACCESS Neutronic Comparison Study Between Pb(208)-Bi and Pb(208) as a Coolant In The Fast Reactor With Modified CANDLE Burn up Scheme. To cite this article:

More information

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Production David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Where are we? Nuclear Fuel Cycle Background Pu- Radioactive, chemical element, of the actinoid series of the periodic

More information

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation

Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation 42 Parametric Studies of the Effect of MOx Environment and Control Rods for PWR-UOx Burnup Credit Implementation Anne BARREAU 1*, Bénédicte ROQUE 1, Pierre MARIMBEAU 1, Christophe VENARD 1 Philippe BIOUX

More information

Denaturation of Pu by Transmutation of MA

Denaturation of Pu by Transmutation of MA Denaturation of Pu by Transmutation of MA Tokyo Tech Hiroshi SAGARA Masaki SAITO 1 Denaturing of Pu to increase isotopic barrier for civil Pu Denatured Pu Excess Pu Minor Actinides Pu Denaturation system

More information

Criticality Safety in the Waste Management of Spent Fuel from NPPs

Criticality Safety in the Waste Management of Spent Fuel from NPPs Criticality Safety in the Waste Management of Spent Fuel from NPPs Robert Kilger (GRS) Garching / Forschungszentrum, Boltzmannstr. 14, D-85748 Garching n. Munich Abstract: During irradiation in the reactor

More information

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe

Current studies of neutron induced reactions regard essentially two mass regions, identified in the chart of nuclides: isotopes in the region from Fe The talk gives an overview of the current reseach activity with neutron beams for fundamental and applied Nuclear Physics. In particular, it presents the status and perspectives of neutron studies in the

More information

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for Novi Sad, ad hoc Experiments using transmutation set-ups Speaker : Wolfram Westmeier for Participants of collaboration are JINR members or they have Agreements : Russia, Germany, Armenia, Australia, Belarus,

More information

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design

A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design Abstract A New MCNPX PTRAC Coincidence Capture File Capability: A Tool for Neutron Detector Design L. G. Evans, M.A. Schear, J. S. Hendricks, M.T. Swinhoe, S.J. Tobin and S. Croft Los Alamos National Laboratory

More information

Modeling and Simulation of Dispersion Particle Fuels in Monte Carlo Neutron Transport Calculation

Modeling and Simulation of Dispersion Particle Fuels in Monte Carlo Neutron Transport Calculation 18 th IGORR Conference 2017 Modeling and Simulation of Dispersion Particle Fuels in Monte Carlo Neutron Transport Calculation Zhenping Chen School of Nuclear Science and Technology Email: chzping@yeah.net

More information

MULTI-RECYCLING OF TRANSURANIC ELEMENTS IN A MODIFIED PWR FUEL ASSEMBLY. A Thesis ALEX CARL CHAMBERS

MULTI-RECYCLING OF TRANSURANIC ELEMENTS IN A MODIFIED PWR FUEL ASSEMBLY. A Thesis ALEX CARL CHAMBERS MULTI-RECYCLING OF TRANSURANIC ELEMENTS IN A MODIFIED PWR FUEL ASSEMBLY A Thesis by ALEX CARL CHAMBERS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

First ANDES annual meeting

First ANDES annual meeting First ANDES Annual meeting 3-5 May 011 CIEMAT, Madrid, Spain 1 / 0 *C.J. Díez e-mail: cj.diez@upm.es carlosjavier@denim.upm.es UNCERTAINTY METHODS IN ACTIVATION AND INVENTORY CALCULATIONS Carlos J. Díez*,

More information

Current Developments of the VVER Core Analysis Code KARATE-440

Current Developments of the VVER Core Analysis Code KARATE-440 Current Developments of the VVER Core Analysis Code KARATE-440 György Hegyi Hungarian Academy of Sciences Centre for Energy Research, Budapest, Hungary Reactor Analysis Department Konkoly Thege Miklós

More information

Radioactive Inventory at the Fukushima NPP

Radioactive Inventory at the Fukushima NPP Radioactive Inventory at the Fukushima NPP G. Pretzsch, V. Hannstein, M. Wehrfritz (GRS) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh Schwertnergasse 1, 50667 Köln, Germany Abstract: The paper

More information

Simulating the Behaviour of the Fast Reactor JOYO

Simulating the Behaviour of the Fast Reactor JOYO IYNC 2008 Interlaken, Switzerland, 20 26 September 2008 Paper No. 163 Simulating the Behaviour of the Fast Reactor JOYO ABSTRACT Pauli Juutilainen VTT Technical Research Centre of Finland, P.O. Box 1000,

More information

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2

Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 Neutronic analysis of SFR lattices: Serpent vs. HELIOS-2 E. Fridman 1, R. Rachamin 1, C. Wemple 2 1 Helmholtz Zentrum Dresden Rossendorf 2 Studsvik Scandpower Inc. Text optional: Institutsname Prof. Dr.

More information

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May Transmutation Systems

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May Transmutation Systems 2141-4 Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies 3-14 May 2010 Transmutation Systems Stanculescu A. IAEA Vienna AUSTRIA R&D IN THE FIELD OF ACCELERATOR DRIVEN

More information

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production I. Gauld M. Williams M. Pigni L. Leal Oak Ridge National Laboratory Reactor and Nuclear Systems Division

More information

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors

On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors On the use of SERPENT code for few-group XS generation for Sodium Fast Reactors Raquel Ochoa Nuclear Engineering Department UPM CONTENTS: 1. Introduction 2. Comparison with ERANOS 3. Parameters required

More information

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013 Principles of Radiometric Dating http://facstaff.gpc.edu/~pgore/geology/geo102/radio.htm Naturally occurring radioactive materials break down into other materials at known rates. This is known as radioactive

More information

Status of J-PARC Transmutation Experimental Facility

Status of J-PARC Transmutation Experimental Facility Status of J-PARC Transmutation Experimental Facility 10 th OECD/NEA Information Exchange Meeting for Actinide and Fission Product Partitioning and Transmutation 2008.10.9 Japan Atomic Energy Agency Toshinobu

More information

Chapter 5: Applications Fission simulations

Chapter 5: Applications Fission simulations Chapter 5: Applications Fission simulations 1 Using fission in FISPACT-II FISPACT-II is distributed with a variety of fission yields and decay data, just as incident particle cross sections, etc. Fission

More information

Fundamentals of Nuclear Reactor Physics

Fundamentals of Nuclear Reactor Physics Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis. Gray S. Chang. September 12-15, 2005

HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis. Gray S. Chang. September 12-15, 2005 INEEL/CON-05-02655, Revision 3 PREPRINT HTR Spherical Super Lattice Model For Equilibrium Fuel Cycle Analysis Gray S. Chang September 12-15, 2005 Mathematics And Computation, Supercomputing, Reactor Physics

More information

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION.

PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. PEBBLE BED REACTORS FOR ONCE THROUGH NUCLEAR TRANSMUTATION. Pablo León, José Martínez-Val, Alberto Abánades and David Saphier. Universidad Politécnica de Madrid, Spain. C/ J. Gutierrez Abascal Nº2, 28006

More information

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov

Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Troitsk ADS project S.Sidorkin, E.Koptelov, L.Kravchuk, A.Rogov Institute for Nuclear Research RAS, Moscow, Russia Outline Linac and experimental complex Pulse neutron sources and its infrastructure Development

More information

BN-800 HISTORY AND PERSPECTIVE

BN-800 HISTORY AND PERSPECTIVE BN-800 HISTORY AND PERSPECTIVE I. Yu. Krivitski Institute for Physics and Power Engineering, Russia, e-mail:stogov@ippe.obninsk.ru ABSTRACT The sodium cooled fast reactors are one of the most developed

More information

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation

PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation PHYS-E0562 Ydinenergiatekniikan jatkokurssi Lecture 5 Burnup calculation Jaakko Leppänen (Lecturer), Ville Valtavirta (Assistant) Department of Applied Physics Aalto University, School of Science Jaakko.Leppanen@aalto.fi

More information

X. Neutron and Power Distribution

X. Neutron and Power Distribution X. Neutron and Power Distribution X.1. Distribution of the Neutron Flux in the Reactor In order for the power generated by the fission reactions to be maintained at a constant level, the fission rate must

More information

SPES cyclotron-driven fast neutron irradiation facility aimed at nuclear data needs for next generation nuclear reactors: the FARETRA project at LNL

SPES cyclotron-driven fast neutron irradiation facility aimed at nuclear data needs for next generation nuclear reactors: the FARETRA project at LNL INFN-LNL Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro SPES cyclotron-driven fast neutron irradiation facility aimed at nuclear data needs for next generation nuclear reactors:

More information

YALINA-Booster Conversion Project

YALINA-Booster Conversion Project 1 ADS/ET-06 YALINA-Booster Conversion Project Y. Gohar 1, I. Bolshinsky 2, G. Aliberti 1, F. Kondev 1, D. Smith 1, A. Talamo 1, Z. Zhong 1, H. Kiyavitskaya 3,V. Bournos 3, Y. Fokov 3, C. Routkovskaya 3,

More information

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO

Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO Shigeo OHKI, Kenji YOKOYAMA, Kazuyuki NUMATA *, and Tomoyuki JIN * Oarai Engineering

More information

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3

Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Nuclear Data for Emergency Preparedness of Nuclear Power Plants Evaluation of Radioactivity Inventory in PWR using JENDL 3.3 Yoshitaka Yoshida, Itsuro Kimura Institute of Nuclear Technology, Institute

More information

MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES

MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES MODELLING OF HTRs WITH MONTE CARLO: FROM A HOMOGENEOUS TO AN EXACT HETEROGENEOUS CORE WITH MICROPARTICLES Rita PLUKIENE a,b and Danas RIDIKAS a 1 a) DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette,

More information

Minor Actinides Transmutation: ADS and Power Fast Reactors

Minor Actinides Transmutation: ADS and Power Fast Reactors Nuclear 2011 Piteşti May 25-27, 2011 Minor Actinides Transmutation: ADS and Power Fast Reactors Carlo Artioli carlo.artioli@enea.it Outline - Wastes and Minor Actines - EFIT, the ADS of EU EUROTRANS Project

More information

Transmutation: reducing the storage time of spent fuel

Transmutation: reducing the storage time of spent fuel Open Access Journal Journal of Power Technologies 94 (Nuclear Issue) (2014) 27 34 journal homepage:papers.itc.pw.edu.pl Transmutation: reducing the storage time of spent fuel Piotr Mazgaj, Piotr Darnowski

More information

Delayed neutrons in nuclear fission chain reaction

Delayed neutrons in nuclear fission chain reaction Delayed neutrons in nuclear fission chain reaction 1 Critical state Temporal flow Loss by leakage Loss by Absorption If the number of neutrons (the number of fission reactions) is practically constant

More information

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES

COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES COMPARATIVE ANALYSIS OF WWER-440 REACTOR CORE WITH PARCS/HELIOS AND PARCS/SERPENT CODES S. Bznuni, A. Amirjanyan, N. Baghdasaryan Nuclear and Radiation Safety Center Yerevan, Armenia Email: s.bznuni@nrsc.am

More information

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM,

Neutronic Issues and Ways to Resolve Them. P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR Project High-Temperature Reactor Neutronic Issues and Ways to Resolve Them P.A. Fomichenko National Research Center Kurchatov Institute Yu.P. Sukharev JSC Afrikantov OKBM, GT-MHR PROJECT MISSION

More information