Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation

Similar documents
Approximating the basis set dependence of coupled cluster calculations: Evaluation of perturbation theory approximations for stable molecules

Lec20 Fri 3mar17

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany

Density functional theory predictions of anharmonicity and spectroscopic constants for diatomic molecules

Benchmark calculations with correlated molecular wave functions

Basis sets for electron correlation

Methods for Treating Electron Correlation CHEM 430

Accurate multireference configuration interaction calculations on the lowest 1 and 3 electronic states of C 2,CN, BN, and BO

Electron Correlation - Methods beyond Hartree-Fock

Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc Zn

Stuart Carter Department of Chemistry, University of Reading, Reading RG6 2AD, United Kingdom

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Performance of Hartree-Fock and Correlated Methods

Theoretical determination of the heat of formation of methylene

Highly accurate quantum-chemical calculations

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Relativistic and correlation effects on molecular properties. II. The hydrogen halides HF, HCl, HBr, HI, and HAt

MP2 Basis Set Limit Binding Energy Estimates of Hydrogen-bonded Complexes from Extrapolation-oriented Basis Sets

Lec20 Wed 1mar17 update 3mar 10am

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

Highly Accurate Ab Initio Computation of Thermochemical Data

154 J. Chem. Phys. 108 (1), 1 January /98/108(1)/154/23/$ American Institute of Physics

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

A coupled cluster study of the spectroscopic properties and electric dipole moment functions of nitrous sulfide

The performance of the Hartree-Fock-Wigner correlation model for light diatomic molecules

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

G1-3 These methods are based on ab initio molecular orbital calculations. Electron correlation is calculated using MP2 or MP4 and QCI.

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

Relativistic and correlation effects on molecular properties. I. The dihalogens F 2,Cl 2,Br 2,I 2, and At 2

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

QUANTUM CHEMISTRY PROJECT 3: PARTS B AND C

Introduction to Computational Chemistry: Theory

Computational Methods. Chem 561

Exercise 1: Structure and dipole moment of a small molecule

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Introduction to Computational Chemistry

Computational Chemistry I

CHEMISTRY - CLUTCH CH.8 - PERIODIC PROPERTIES OF THE ELEMENTS

Size-extensive wave functions for QMC A linear-scaling GVB approach

Uptake of OH radical to aqueous aerosol: a computational study

Applications of Newly Developed spdsmcps for First-Row Transition Metal Atoms

Detlev Figgen, Erich Goll, and Hermann Stoll b) Institut für Theoretische Chemie, Universität Stuttgart, D Stuttgart, Germany

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods

Before I entered the Texas Academy of Mathematics and Science as a junior, I had very little

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Orbital dependent correlation potentials in ab initio density functional theory

FEATURE ARTICLE. Exploration of Basis Set Issues for Calculation of Intermolecular Interactions

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved.

Chemistry 334 Part 2: Computational Quantum Chemistry

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

FEATURE ARTICLE. Ab Initio Calculation of Nonbonded Interactions: Are We There Yet? A. K. Rappé* and E. R. Bernstein*

Introduction to Computational Quantum Chemistry: Theory

THE PERFORMANCE OF DENSITY FUNCTIONALS WITH RESPECT TO THE CORRELATION CONSISTENT BASIS SETS. Xuelin Wang, B.S., M.S

Quantum Chemistry Methods

Chemistry Publications

Predictive Computing for Solids and Liquids

Structures and infrared spectra of fluoride hydrogen sulfide clusters from ab initio calculations: F -(H 2 S) n, n = 1 5w

arxiv:physics/ v1 [physics.chem-ph] 15 Aug 2006

Monte Carlo simulations of thermodynamic properties of argon, krypton and xenon in liquid and gas state using new ab initio pair potentials

Periodic Trends in Properties of Homonuclear

SUPPLEMENTARY INFORMATION

Towards gas-phase accuracy for condensed phase problems

Probing the limits of accuracy in electronic structure calculations: Is theory capable of results uniformly better than chemical accuracy?

Density Functional Theory

Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions

A complete basis set model chemistry for excited states

Benjamin Jäger, Robert Hellmann, Eckard Bich, Eckhard Vogel. HAL Id: hal

Electron Correlation Methods

Coupled-cluster and perturbation methods for macromolecules

Periodic Classification of Elements

Basis Set for Molecular Orbital Theory

Beyond the Hartree-Fock Approximation: Configuration Interaction

A One-Slide Summary of Quantum Mechanics

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 HCl + CH3 and H + CH3Cl reactions

Molecular Geometries at Sixth Order Møller-Plesset Perturbation Theory. At What Order Does MP Theory Give Exact Geometries?

Electron Correlation

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Ab initio treatment of electron correlations in polymers: Lithium hydride

Coupled Cluster Theory and Tensor Decomposition Techniques

The Potential Energy Surface

Systematic ab initio calculations on the energetics and stability of covalent O 4

Chemistry 881 Lecture Topics Fall 2001

Eckhard Vogel, Robert Hellmann, Eckard Bich

Coupled-Cluster Perturbative Triples for Bond Breaking

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

Fragmentation methods

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Extending Kohn-Sham density-functional theory

An Accurate Calculation of Potential Energy Curves and Transition Dipole Moment for Low-Lying Electronic States of CO

Chapter 5 Predicted A-X Transition Frequencies and 2-Dimensional Torsion-Torsion Potential Energy Surfaces of HOCH 2 OO and HOC(CH 3 ) 2 OO

Transcription:

Solution of the Electronic Schrödinger Equation Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation

Errors in HF Predictions: Binding Energies D e (kcal/mol) HF Expt l Chemical Bonds Hydrogen Bonds Electrostatic Bonds van der Waals Bonds HF 100.3 141.6 N 2 122.3 228.4 F 2-27.0 39.0 (HF) 2 3.7 4.6 N 2 -HF 1.27 2.22 He 2 NB 0.0218

Mathematical Models for Electron Correlation Configuration Interaction e = 0 + C ia i a + H e C = E e C C ij ab ij ab + Perturbation Theory R Long history in electronic structure theory R Very flexible, e.g., can describe both ground and excited states R Number of configurations grows rapidly with excitation level R Truncated CI not size extensive H e = H 0 + H 1 e = 0 + 1 + 2 2 + E e = E 0 + E 1 + 2 E 2 + R Most widely used technique for including electron correlation RH 0 usually taken to be the HF Hamiltonian R Recent studies have revealed serious convergence problems

Models for Electron Correlation (cont d) Coupled Cluster Theory e = e T 0 T = t 1 + t 2 + t 3 + t 1 = t ia a a+ a i t 2 = t ab ij a b+ a a+ a j a i t 3 =... R Recent addition to electronic structure theory R Includes dominant higher-order terms as products of lower order terms R Rapid convergence if wavefunction is dominated by well localized electron pairs, e.g., CCSD is exact if electron pairs are completely separate R Convergence problems if HF wavefunction provides a very poor zeroorder description of molecule

Notation for Correlated Calculations Perturbation Theory Methods H e = H 0 + H 1 = 0 + 1 + 2 2 +... Coupled Cluster Methods = e T 0 T = T 1 + T 2 + T 3 +... Variational Methods = 0 + C a i a i + C ab ij ab ij +... {ai} {ab}{ij} T 2 T 1 +T 2 T 1 +T 2 +T 3... MP2 MP3 MP4... CCD CCSD CCSDT... SDCI SDTCI... MRCI

SDCI Calculations on the Oxygen Atom -100.0 E n,n-1 = E corr (n, l) - E corr (n-1, l) E n,n+1 (me h ) -10.0-1.0 (1h) (ng) (nf) (nsnp) (nd) -0.1 1 2 3 4

Contributions to Correlation Energy (SDCI) Basis Function Groupings Contributions of basis functions to the correlation energy for the first row atoms fall into distinct groups with E 1,0 (sp) E 1,0 (d) E 2,1 (sp) E 2,1 (d) E 1,0 (f) E 3,2 (sp) E 3,2 (d) E 2,1 (f) E 1,0 (g) These grouping form the foundation for the construction of correlation consistent basis sets: cc-pvdz: cc-pvtz: cc-pvqz: HF Orbitals + (1s1p1d) HF Orbitals + (2s2p2d1f) HF Orbitals + (3s3p3d2f1g) where to balance the errors cc-pvdz: cc-pvtz: cc-pvqz: HF Set = (9s4p) HF Set = (10s5p) HF Set = (12s6p) -100.0-10.0-1.0-0.1 cc-pvdz cc-pvtz cc-pvqz cc-pv5z 1 2 3 4 N bf

B B P B J H Atomic Calculations with cc-sets E corr (me h ) -50.0-100.0-150.0-200.0-250.0-300.0 B J H P F R B B B J J J J H C H H H P F R F R P F R P F R Ne -350.0 2 3 4 5 6 P B N O F Exponential Convergence E corr (n) = E corr ( ) + E corr (2)e - (n-2) Inverse Powers of l max (=n) E corr (n) = E corr ( ) + A/n 3

Errors in Molecular Calculations Basis Set Convergence Error Q bsm (n) = Q(M,n) Q (M, ) Intrinsic Error Q M = Q(M, ) Q(expt l) Calculational Error Q calc dm (n) = Q(M,n) Q (expt l) = Q bsm (n) + Q M

Illustration of Types of Errors in Calculations Type I Type II Type III Q(expt l) Q M ( ) Q calc d M Q M Q bsm (n) Note: Q calc d M 0 n n n

Confusion: Convergence of D e (N 2 ) with MPn 240.0 D e (kcal/mol) 230.0 220.0 210.0 200.0 228.4 kcal/mol MP2 MP3 MP4 Basis set: cc-pvtz

Resolution of the N 2 Problem

Binding Energies: Chemically Bound Molecules CH HF N 2 CO D e (expt l) a 83.9 141.6 228.4 259.3 D e (core-valence) -0.2-0.2-0.8-0.9 D e (valence-only) 83.7 141.4 227.6 258.4 CCSD -0.8-2.0-9.9-7.5 CCSD(T) 0.0 0.1-0.3 0.1 CCSDT 0.1 0.0-0.9-0.3 MP2-2.7 4.4 12.4 13.6 MP3-1.2-3.3-11.8-7.9 MP4-0.4 1.3 4.2 5.9 MP5-0.8 a Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules; Van Nostrand,; Princeton, 1979.

Binding Energies: Hydrogen-bonded Molecules (HF) 2 D e (expt l) a, kcal/mol 4.56 CCSD -0.16 CCSD(T) -0.02 MP2-0.09 MP3-0.03 MP4-0.02 a Cayton, D. C.; Jucks, K. W.; Miller, R. E. J. Chem. Phys. 1989, 90, 2631; Klopper, W.; Quack, M.; Suhm, M. A. J. Chem. Phys. 1998, 108, 10096.

Binding Energies: Weakly Bound Molecules N 2 -HF a Ar-HF b Ar-FH b Ar-HCl c Ar-ClH c D e (expt l), cm -1 776.±30 211.±4 109.±10 176.±5 148.±10 CCSD -52-45 -36 CCSD(T) 17 0-15 0-1 MP2 35-10 -16 31 33 MP3-36 -31-31 MP4 38 7-10 10 7 a Lovejoy, C. M.; Nesbitt, D. J. J. Chem. Phys. 1987, 86, 3151; Nesbitt, D. J.; Child, M. S. J. Chem. Phys. 1993, 98, 478; Nesbitt, D. J.; Lindeman, T. G.; Farrell, J. T., Jr.; Lovejoy, C. M. J. Chem. Phys. 1994, 100, 775; Bemish, R. J.; Bohac, E. J.; Wu, M.; Miller, R. E. J. Chem. Phys. 1994, 101, 9457; Farrell, J. T.; Sneh, O.; Nesbitt, D. J. J. Phys. Chem. 1994, 98, 6068; Tang, S. N.; Chang, H-C.; Klemperer, W. J. Phys. Chem. 1994, 98, 7313. b Hutson, J. M. J. Chem. Phys. 1992, 96, 6752 and references therein. c Hutson, J. M. J. Chem. Phys. 1988, 89, 4550; Hutson, J. M. J. Phys. Chem. 1992, 96, 4237; and references therein.

Binding Energies: Very Weakly Bound Molecules He 2 a Ne 2 b Ar 2 c D e (expt l), cm -1 7.59 29.4 99.6 D e (core-valence) +0.05-0.8 D e (valence-only) 29.4 98.8 CCSD -1.1-6.8-26.8 CCSD(T) -0.2-1.0-1.8 CCSDT 0.0 MP2-2.7-10.5 13.2 MP3-1.1-7.1-16.8 MP4-0.5-1.9 1.2 MP5-0.2 a Aziz, R. A.; Slaman, M. J. J. Chem. Phys. 1991, 94, 8047. Aziz, R. A.; Janzen, A. R.; Moldover, R. Phys. Rev. Lett. 1995, 74, 1586. b Aziz, R. A.; Meath, W. J.; Allnatt, A. R. Chem. Phys. 1983, 78, 295. Aziz, R. A.; Slaman, M. J. Chem. Phys. 1989, 130, 187. c Aziz, R. A.; Slaman, M. J. Mol. Phys. 1986, 58, 679. Aziz, R. A. J. Chem. Phys. 1993, 99, 4518

References 1. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, T. H. Dunning, Jr., J. Chem. Phys. 90, 1007-1023 (1989). 2. Electron affinities of the first-row atoms revised. Systematic basis sets and wave functions, R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796-6806 (1992). 3. Gaussian basis sets for use in correlated molecular calculations. III. The second row atoms, Al-Ar, D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 980,1358-1371 (1993). 4. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties, D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975-2988 (1994). 5. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon, D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572-4585 (1995).

References (cont d) 6. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple-zeta correlation-consistent sets for boron through neon, A. K. Wilson, T. van Mourik, and T. H. Dunning, Jr., J. Molec. Struct. (Theochem) 388, 339-349 (1996). 7. Gaussian basis sets for use in correlated molecular calculations. VII. The atoms aluminum through argon revisted, T. H. Dunning, Jr., K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244-9253 (2001). 8. Gaussian basis sets for use in correlated molecular calculations. VIII. Standard and augmented sextuple zeta correlation consistent basis sets for aluminum through argon, T. van Mourik and T. H. Dunning, Jr., Intern. J. Quant. Chem. 76, 205-221 (2000). 9. Gaussian basis sets for use in correlated molecular calculations. IX. Correlation consistent sets for the atoms gallium through krypton, T. H. Dunning, Jr., J. Chem. Phys. 110, 7667-7676 (1999). 10. Accurate correlation consistent basis sets for molecular core-valence effects: The second row atoms, Al-Ar, and the first row atoms B-Ne revisited, K. A. Peterson and T. H. Dunning, Jr., J. Chem. Phys. 117, 10548-10560 (2002).