IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

Similar documents
TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TrenchStop Series. P t o t 270 W

TrenchStop Series I C

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IGW25T120. TrenchStop Series

IGW15T120. TrenchStop Series

I C P tot 138 W

SGP30N60HS SGW30N60HS

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

IKW40N120T2 TrenchStop 2 nd Generation Series

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Soft Switching Series

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Soft Switching Series I C I F I FSM

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IGP03N120H2 IGW03N120H2

SKP10N60 SKB10N60, SKW10N60

SGP20N60, SGB20N60, SGW20N60

SIPMOS Small-Signal-Transistor

AUTOMOTIVE GRADE. Standard Pack

SGP30N60, SGB30N60, SGW30N60

OptiMOS 2 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

Silicon Carbide Schottky Diode IDH02G120C5. 5 th Generation CoolSiC 1200 V SiC Schottky Diode. Rev

CoolMOS Power Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-Transistor

IDW10G120C5B. 5 th Generation CoolSiC 1200 V SiC Schottky Diode. Rev

CoolMOS TM Power Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS -P Small-Signal-Transistor

CoolMOS Power Transistor

OptiMOS TM Power-MOSFET

SIPMOS Small-Signal-Transistor

OptiMOS 3 Power-Transistor

CoolMOS Power Transistor

Silicon Carbide Schottky Diode IDW30G120C5B. 5 th Generation CoolSiC 1200 V SiC Schottky Diode. Rev

OptiMOS TM 3 Power-Transistor

CoolMOS Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

BSS123. Rev K/W. R thja

CoolMOS Power Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS P2 Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS 2 Power-Transistor

AUTOMOTIVE GRADE. Standard Pack

Dual N-Channel OptiMOS MOSFET

OptiMOS TM Power-Transistor

OptiMOS TM Power-Transistor

OptiMOS (TM) 3 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

OptiMOS 3 Power-MOSFET


OptiMOS 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

Data Sheet BUY25CS54A-01

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS Power-Transistor

OptiMOS -5 Power-Transistor

TRENCHSTOP TM IGBT3 Chip SIGC158T170R3E

TRENCHSTOP TM IGBT3 Chip SIGC100T65R3E

SIPMOS Small-Signal-Transistor

Transcription:

Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology Features: Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5 s TRENCHSTOP and Fieldstop technology for 600V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior Low EMI Qualified according to JEDEC 1 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ C G E PG-TO252-3 (D-PAK) Applications: Variable Speed Drive for washing machines and air conditioners Buck converters Type V CE I C;Tc=100 C V CE(sat),Tj=25 C T j,max Marking Package 600V 6A 1.5V 175 C G06T60 PG-TO252-3 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage, T j 25 C V CE 600 V DC collector current, limited by T jmax T C = 25 C T C = 100 C I C 12 6 Pulsed collector current, t p limited by T jmax I C p u l s 18 Turn off safe operating area, V CE = 600V, T j = 175 C, t p = 1µs - 18 Gate-emitter voltage V GE 20 V Short circuit withstand time 2) V GE = 15V, V CC 400V, T j 150 C Power dissipation T C = 25 C t SC 5 s P t o t 88 W Operating junction temperature T j -40...+175 Storage temperature T s t g -55...+150 Soldering temperature reflow soldering, MSL1 260 A C 1 J-STD-020 and JESD-022 2) Allowed number of short circuits: <1000; time between short circuits: >1s. IFAG IPC TD VLS 1 Rev. 2.2, 20.09.2013

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, R t h J C 1.7 K/W junction case Thermal resistance, junction ambient R t h J A 62 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V GE =0V, I C =0.25mA Collector-emitter saturation voltage V C E ( s a t ) V GE = 15V, I C =6A T j =25 C T j =175 C Gate-emitter threshold voltage V G E ( t h ) I C =0.18mA, Value min. typ. max. Unit 600 - - V - 1.5 2.05-1.8 4.1 4.6 5.7 V CE =V GE Zero gate voltage collector current I C E S V CE =600V, V GE =0V T j =25 C T j =175 C Gate-emitter leakage current I G E S V CE =0V,V GE =20V - - 100 na Transconductance g fs V CE =20V, I C =6A - 3.6 - S Integrated gate resistor R G i n t none Ω - - - - 40 700 µa Dynamic Characteristic Input capacitance C i s s V CE =25V, - 368 - pf Output capacitance C o s s V GE =0V, - 28 - Reverse transfer capacitance C r s s f=1mhz - 11 - Gate charge Q G a t e V CC =480V, I C =6A Internal emitter inductance measured 5mm (0.197 in.) from case V GE =15V Short circuit collector current 1) I C ( S C ) V GE =15V,t SC 5 s V C C = 400V, T j = 25 C - 42 - nc L E - 7 - nh - 55 - A 1) Allowed number of short circuits: <1000; time between short circuits: >1s. IFAG IPC TD VLS 2 Rev. 2.2, 20.09.2013

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time t d ( o n ) T j=25 C, - 9 - ns Rise time t r V CC=400V,I C=6A, V GE=0/15V, r G=23, - 6 - Turn-off delay time t d ( o f f ) L =60nH,C =40pF - 130 - Fall time t f - 58 - Turn-on energy E on L, C from Fig. E Energy losses include - 0.09 - mj Turn-off energy E o f f tail and diode reverse - 0.11 - recovery. Total switching energy E ts - 0.2 - Diode used IDP06E60 Switching Characteristic, Inductive Load, at T j =175 C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time t d ( o n ) T j=175 C, - 9 - ns Rise time t r V CC=400V,I C=6A, V GE=0/15V,r G= 23-8 - Turn-off delay time t d ( o f f ) L =60nH,C =40pF - 165 - Fall time t f - 84 - Turn-on energy E on L, C from Fig. E Energy losses include - 0.14 - mj Turn-off energy E o f f tail and diode reverse - 0.18 - recovery. Total switching energy E ts - 0.335 - Diode used IDP06E60 IFAG IPC TD VLS 3 Rev. 2.2, 20.09.2013

18A 10A t p =1µs 5µs IC, COLLECTOR CURRENT 15A 12A 9A 6A I c T C =80 C T C =110 C IC, COLLECTOR CURRENT 1A 10µs 50µs 500µs 3A I c 0A 100Hz 1kHz 10kHz 100kHz 5ms DC 0,1A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOR-EMITTER VOLTAGE Figure 1. Collector current as a function of switching freuency (T j 175 C, D = 0.5, V CE = 400V, V GE = 0/15V, r G = 23 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 175 C;V GE =0/15V) 80W 15A Ptot, POWER DISSIPATION 60W 40W 20W IC, COLLECTOR CURRENT 10A 5A 0W 25 C 50 C 75 C 100 C 125 C 150 C 0A 25 C 75 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 175 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 175 C) IFAG IPC TD VLS 4 Rev. 2.2, 20.09.2013

15A 15A V GE =20V V GE =20V IC, COLLECTOR CURRENT 12A 9A 6A 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT 12A 9A 6A 15V 13V 11V 9V 7V 3A 3A 0A 0V 1V 2V 3V V CE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (T j = 25 C) 0A 0V 1V 2V 3V V CE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (T j = 175 C) IC, COLLECTOR CURRENT 15A 12A 9A 6A 3A T J =175 C 25 C 0A 0V 2V 4V 6V 8V 10V VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE 2,5V 2,0V 1,5V 1,0V 0,5V 0,0V -50 C 0 C 50 C 100 C I C =12A I C =6A I C =3A V GE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (V CE =20V) T J, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (V GE = 15V) IFAG IPC TD VLS 5 Rev. 2.2, 20.09.2013

t d(off) t d(off) 100ns t, SWITCHING TIMES 100ns 10ns t f t d(on) t, SWITCHING TIMES 10ns t f t d(on) t r t r 1ns 0A 3A 6A 9A 12A 15A I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T J =175 C, V CE = 400V, V GE = 0/15V, r G = 23Ω, 1ns R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T J =175 C, V CE = 400V, V GE = 0/15V, I C = 6A, t, SWITCHING TIMES 100ns 10ns t d(off) t f t d(on) t r VGE(th), GATE-EMITT TRSHOLD VOLTAGE 6V 5V 4V 3V 2V 1V max. typ. min. 1ns 50 C 100 C 150 C 0V -50 C 0 C 50 C 100 C 150 C T J, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C = 6A, r G = 23Ω, T J, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.18mA) IFAG IPC TD VLS 6 Rev. 2.2, 20.09.2013

E, SWITCHING ENERGY LOSSES 0,6 mj 0,5 mj 0,4 mj 0,3 mj 0,2 mj 0,1 mj ) E on and E ts include losses due to diode recovery E off E ts E on E, SWITCHING ENERGY LOSSES 0,4 mj 0,3 mj 0,2 mj 0,1 mj ) E on and E ts include losses due to diode recovery E ts E on E off 0,0 mj 0A 2A 4A 6A 8A 10A I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T J =175 C, V CE =400V, V GE =0/15V, r G =23Ω, 0,0 mj R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T J =175 C, V CE = 400V, V GE = 0/15V, I C = 6A, 0,4mJ ) E on and E ts include losses due to diode recovery 0,5mJ ) E on and E ts include losses due to diode recovery E, SWITCHING ENERGY LOSSES 0,3mJ 0,2mJ 0,1mJ E ts E off E on E, SWITCHING ENERGY LOSSES 0,4mJ 0,3mJ 0,2mJ 0,1mJ E ts E off E on 0,0mJ 50 C 100 C 150 C T J, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE =400V, V GE = 0/15V, I C = 6A, r G = 23Ω, 0,0mJ 200V 300V 400V 500V V CE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, T J = 175 C, V GE = 0/15V, I C = 6A, r G = 23Ω, IFAG IPC TD VLS 7 Rev. 2.2, 20.09.2013

1nF VGE, GATE-EMITTER VOLTAGE 15V 10V 5V 120V 480V c, CAPACITANCE 100pF C iss C oss C rss 10pF 0V 0nC 10nC 20nC 30nC 40nC 50nC Q GE, GATE CHARGE Figure 17. Typical gate charge (I C = 6 A) 0V 10V 20V V CE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE =0V, f = 1 MHz) 12µs IC(sc), short circuit COLLECTOR CURRENT 80A 60A 40A 20A 0A 12V 14V 16V 18V tsc, SHORT CIRCUIT WITHSTAND TIME 10µs 8µs 6µs 4µs 2µs 0µs 10V 11V 12V 13V 14V V GE, GATE-EMITTETR VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (V CE 400V, T j 150 C) V GE, GATE-EMITETR VOLTAGE Figure 20. Short circuit withstand time as a function of gate-emitter voltage (V CE =400V, start at T J =25 C, T Jmax <150 C) IFAG IPC TD VLS 8 Rev. 2.2, 20.09.2013

ZthJC, TRANSIENT THERMAL IMPEDANCE 10 0 K/W D=0.5 0.2 0.1 0.05 10-1 K/W 0.02 0.01 single pulse R, ( K / W ), ( s ) 0.3837 5.04710-2 0.4533 4.75810-3 0.5877 4.96510-4 0.2483 4.71710-5 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 10-2 K/W 1µs 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 21. IGBT transient thermal impedance (D = t p / T) IFAG IPC TD VLS 9 Rev. 2.2, 20.09.2013

IFAG IPC TD VLS 10 Rev. 2.2, 20.09.2013

i,v di F /dt t =t + t r r S F Q =Q + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal euivalent circuit Figure B. Definition of switching losses IFAG IPC TD VLS 11 Rev. 2.2, 20.09.2013

Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 2018. All Rights Reserved. IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer s compliance with its obligations stated in this document and any applicable legal reuirements, norms and standards concerning customer s products and any use of the product of Infineon Technologies in customer s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). Please note that this product is not ualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council. WARNINGS Due to technical reuirements products may contain dangerous substances. For information on the types in uestion please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any conseuences of the use thereof can reasonably be expected to result in personal injury. IFAG IPC TD VLS 12 Rev. 2.2, 20.09.2013