Identification and Analysis of a Buried Prairie Soil at the Ernie Bank Archaeological Site, Vernon County, Wisconsin

Similar documents
Prehistoric Clay Sources: A Forensic Exercise in Geoarchaeology

Using Ground Conductivity as a Geophysical Survey Technique to Locate Potential Archaeological Sites in the Bad Axe River Valley of Western Wisconsin

CHAPTER 4. Blue Heron Site (47Je1001) 2003 Investigations. By Chrisie L. Hunter

APPENDIX G GLOSSARY. Mn/DOT/WR-0200

Lab Exercise 3: Geology, Soils and Archaeological Site Settings of Rift Valleys

Starting at Rock Bottom: A Peculiar Central Texas PreClovis Culture

MINNESOTA DEEP TEST PROTOCOL PROJECT

December 13, Kirk Shields Green Mountain Power 163 Acorn Lane Colchester, VT 05446

Table 9. FAI accession log

Soil Formation. Lesson Plan: NRES B2-4

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY

OCR CARBON DATING OF THE WATSON BRAKE MOUND COMPLEX

SUPPLEMENTAL MATERIAL

AN ARCHAEOLOGICAL SURVEY FOR THE EASTHAM STATE PRISON FARM UNIT PROJECT IN HOUSTON COUNTY TEXAS

Introduction to Soil Science and Wetlands Kids at Wilderness Camp

Laboratory data for calcic soils in central New Mexico: Background information for mapping Quaternary deposits in the Albuquerque Basin

Discovery and Occurrence

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades?

AN ARCHAEOLOGICAL SURVEY FOR THE DCP MIDSTREAM THREE RIVERS PLANT TO CGP 51 PROJECT IN LIVE OAK COUNTY, TEXAS

Jim Turenne. Soils on Social Media

THE CROOKS GAP HOUSEPIT SITE AND OTHER NEARBY MID-HOLOCENE HOUSEPITS

Work Conducted in August 2018

A Phase I Archaeological Survey of Muir Knoll, University of Wisconsin-Madison, Dane County, Wisconsin

Regional Geomorphology

SOILS AND GEOMORPHOLOGY OF THE LOWER LITTLE CEDAR RIVER VALLEY, NORTHEAST IOWA

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Maggie Payne Jim Turenne

Unit E: Basic Principles of Soil Science. Lesson 2: Understanding Soil Formation


SETTLEMENT. Student exercises. The Kuril Biocomplexity Project:

The future of the Lowland Belizean Savannas?.

Lake Levels and Climate Change in Maine and Eastern North America during the last 12,000 years

SECOND HOMEWORK ASSIGNMENT Absolute and Relative Dating Methods

The Montauk Peninsula: Data and Preliminary Interpretations of the Ditch Plains Area Introduction

Stratigraphy Layers of Time in the Earth by Carol Schlenk

LABORATORY TECHNIQUES

Description DESCRIPTION

Ecoregions Glossary. 7.8B: Changes To Texas Land Earth and Space

Unit 1 Soil Physics (Labs 2, 3 and 4) Lab 2 Soil Formation, Color, and Texture

Geomorphology and Archaeology: Case Studies from Western New York

Activity 3.2: Effigy Mounds

David Moore, PacifiCorp Cultural Resources Coordinator Denise DeJoseph, Project Archaeologist

Weathering, Soil, and Mass Movements

Chapter 6, Part Colonizers arriving in North America found extremely landscapes. It looked different to region showing great.

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

residuum resulting from weathering over an extended period of time has vertical layers called soil profile from surface down to fresh parent material

Location, Location, Location: the Construction and Preservation of Roman Burial Mounds in the Dutch River Delta

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere.

Archaeological Survey and Evaluation at 8954 El Dorado Parkway, El Cajon, San Diego County, California

Geoarchaeology and Geophysics at Feltus

Correlation of gravel deposits from trenching project on Alder Creek fluvial terrace near Point Arena, California

Evaluation/Monitoring Report No. 152

Geomorphological and Geoarchaeological Investigations in Support of Archeological Investigations

RALPH SIMMONS STATE FOREST 2016 LAND MANAGEMENT PLAN EXHIBITS

Selected Archeological Terms

The Geomorphology of the Pig Point Site (18AN50) Landform Development, Climate Change, and Long-Term Human Occupation

Origins of the First Californians

Archaeological Excavations at Pie Creek and Tule Valley Shelters, Elko County, Nevada

THE BERRYESSA CREEK SITE CA-SCL-593. Robert Cartier Richard San Filippo Archeological Resource Management 496 North Fifth Street San Jose, CA 95112

New Final Neolithic cemetery E-09-4, Gebel Ramlah Playa, Western Desert of Egypt

Soil Development. Soils Sustain Life

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

4.11 CULTURAL RESOURCES

Archaeological Glossary

Records of climate and vegetation change over time in an area are found from many

Weathering and Soil Formation. Chapter 10

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s


Tales of the Past. Source: Sci-ber Text with the Utah State Office of Education

Ceramic compositional analysis projects Funded by the Begole Archaeological Research Grant Program

Changes in Texas Ecoregions

Geomorphology Of The Chilliwack River Watershed Landform Mapping At North Cascades National Park Service Complex, Washington By National Park Service

Evidence for distribution and thickness of Athens Sub-episode and older sediments in Ottawa County, Michigan

Mechanical Weathering

January 25, Summary

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin?

Clyde River Landslide

Weathering, Erosion and Deposition

Great Lakes Tributary Modeling: Canaseraga Creek Watershed

Soil Morphology and Stratigraphy on an Erosional Footslope: Dickinson Experiment Station in Western North Dakota

5 Significance of Geomorphology to Cultural Resources

The Driftless Area. Dave Speer Geography 326

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Weathering, Erosion, Deposition, and Landscape Development

Rocks and Weathering

Custom Soil Resource Report Soil Map

SUMMARY OF 2015 RESEARCH OF THE SCOTTIE CREEK BORDERLANDS CULTURE HISTORY PROJECT

Pee Dee Explorer. Science Standards

3.1 Regional Physical Setting

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013

THE TWO MOST SIGNIFICANT ARCHEOLOGICAL SITES IN KERR COUNTY, TEXAS ARE THE GATLIN SITE AND THE BEARING SINK HOLE SITE.

Studying Rocks and Soil

Correlation of Tills Exposed in Toledo Edison Dam Cut, Ohio

Case study 22: Soil and Sediment Analysis from Viking to Medieval deposits in Orkney

The Upper Paleolithic Longwangcan Site at Yichuan in Shaanxi

An Archaeological Analysis of the Swennes Upper Garden Site: Temporal and Seasonal Indicators

Weathering is the process that breaks down rock and other substances at Earth s surface

Lecture 7: Introduction to Soil Formation and Classification

DATING HOW OLD IS THIS THING?

PHYSICAL GEOGRAPHY. By Brett Lucas

Transcription:

BURIED PRAIRIE SOIL AT THE ERNIE BANK ARCHAEOLOGICAL SITE 163 Identification and Analysis of a Buried Prairie Soil at the Ernie Bank Archaeological Site, Vernon County, Wisconsin Luther Leith Faculty Advisor: Dean Wilder Department of Geography and Earth Science ABSTRACT This project evaluated a buried soil at the Ernie Bank site, a Late Woodland occupation (A.D. 800 A.D. 1050), in Vernon County Wisconsin. The site was analyzed for any cultural evidence, and to determine if the soil formed under prairie conditions. I conducted a particle size analysis, soil ph, total carbon (LOI), and percent organic carbon analysis to determine if this soil formed under prairie vegetation. Stratigraphic column, and soil profile samples were examined for micro-artifacts by screening the samples through a 1 /4 inch screen and #10 sieve. By using soil color and texture I determined the soil horizon sequence as A b, B t, B g. The upper 10 centimeters of the stratigraphic column represent historic slope wash. The information from the particle size, soil ph, total carbon (LOI), and percent organic carbon, shows a stable surface from 100-120centimeters, a period of flood deposition, and another stable surface at 160 centimeters. A combination of field research and laboratory analysis indicated that the buried soil containing artifacts was formed under prairie conditions. INTRODUCTION Soil study, or pedology, is important to the study of archaeology for numerous reasons. Geoscientists see artifacts, and thus archaeology, as just another part of the deposit, which can be modified by the same processes which affect the rest of the deposit. Archaeologists also use the concept of the deposit as seen in their use of stratigraphy in excavations (Stein 1987). Rapp and Hill suggest, An understanding of the steps involved in the formation of sedimentary deposits gives an insight into the events that contribute to accumulations of artifacts (Rapp and Hill 1998:18). The concept of the deposit has been used for many purposes: to establish human antiquity, to provide relative dates, to reconstruct the environment, and to analyze site formation processes (Stein 1987:337). The use of soil as an environmental and chronologic indicator has been well documented. Birkeland states, They [soils] can be used to indicate the ages of certain layers, past moisture conditions, or perhaps past vegetation (Birkeland 1984:344). Ferring, in discussing alluvial paleoenvironments, states: [alluvial soils] are valuable in the study of prehistoric occupations. In too many cases, unfortunately, direct evidence for paleoenvironments, such as pollen, snails or plant macrofossils, is poorly preserved in alluvial settings. Under these circumstances, soils are especially important evidence for past environments (Ferring 1992:15). Thus it is important for the archaeologist to have someone with knowledge of soils on the crew to identify the diagnostic factors.

164 LEITH Lastly, archaeological sites in alluvial settings are subject to various processes which may skew data if not recognized. Ferring discusses three reasons why alluvial pedology (soils) is important to archaeologists. Briefly these are 1) the concentration of sites in river valleys, 2) the complexity of geologic records (stratigraphy) in alluvial settings, and 3) the scales at which soils can be applied, within sites, among sites, and regional scope (Ferring 1992). The concentration of archaeological sites in alluvial settings, according to Waters, is due to the use of such settings for hunting and gathering, and later for farming (Waters 1992). Alluvial settings can cause problems in interpretation for the archaeologist who is ignorant of the dynamics of these settings. Artifacts in alluvial settings act like and are acted upon like any other sedimentary particle. Artifacts in these [alluvial] sites may be eroded, transported, and redeposited as sedimentary particles (Rapp and Hill 1998:18). This could have profound effects on context, as the artifacts may have been deposited in one location then transported to a secondary location and redeposited, buried, then later excavated. Thus it is important to keep in mind that Alluvium [including artifacts] is in temporary storage; when conditions that prompted its sedimentation are reached again, re-entertainment of sediment [and artifacts] will occur (Gladfelter 1985:41). I think that the reasons given above are enough to justify the use of soils in archaeology. With an understanding of soils the archaeologist can make more valid inferences. When soils are used with other techniques fairly definitive paleoenvironmental assumptions can be made, and soils can be used, in the absence of other factors, to determine environmental conditions. By recognizing alluvial sites for the dynamic settings that they are the archaeologist will be able to avoid erroneous inferences. SITE SUMMARY I investigated the Ernie Bank site (also known as Tollackson 6, 47Ve1011) located in Vernon County, Wisconsin, on the North Fork of the Bad Axe River (Figure 1-2), on the Tollackson farm complex (owned by Bryce Tollackson). The Bad Axe drainage is located in the Driftless Area of southwest Wisconsin, and drains an area of 492 km 2, with the north fork draining 210 km 2. Excavations were conducted by the Mississippi Valley Archaeology Center during the 1993 through the 1996 field seasons. The excavations yielded cord roughened, grit tempered pottery, with diagnostic shoulder and rim decorations. These sherds proved to be Madison Cord Impressed pottery, identifying an Eastman phase occupation, A.D.800- A.D.1050, of the Late Woodland culture as a relative time period. The cultural material was found below 50 cm of historic alluvium, and under another 50 cm of a buried A horizon (Theler and Boszhardt 2000). Also at the Tollackson complex is an Effigy Mound group consisting of 14 birds and quadrupeds, further evidence of Late Woodland occupation. The Figure 1. Location in Driftless Area

BURIED PRAIRIE SOIL AT THE ERNIE BANK ARCHAEOLOGICAL SITE 165 Figure 2. Topographic Location on the North Fork of the Bad Axe River in Harmony Township faunal assemblage from these excavations produced small mammal remains, with pocket gopher (Geomys bursarius) suggesting prairie or mixed prairie woodland for the prehistoric habitat. By A.D. 1050-1150 the people had left this area possibly due to over population/exploitation of the area. The location of my stratigraphic column/soil profile was on a cut-bank of Tollackson 6 adjacent to the Bad Axe River, near the 1993 excavations. The goal of this project was to investigate the soils at the Ernie Bank site to determine if the buried soil represents a former prairie surface. METHODS Sediments from a stratigraphic column, and five samples from the soil profile horizons, from the Ernie Bank site, were examined in the field (Figure 3). Laboratory methods included particle size analysis (Gee and Bauder 1979), soil ph (Janitzky 1986a), total carbon loss on ignition (Storer 1983), and percent organic carbon (Janitzky 1986b). The stratigraphic column was collected in arbitrary 5cm levels, with zero datum at 80 centimeters below ground surface, omitting the historic alluvium, which I did not study. A total of 24 stratigraphic sediment samples and 5 soil horizon samples were collected for laboratory analysis. Lower boundary depths for the individual soil horizons and boundary characteristics were determined in the field. Soil color was determined using a Munsell soil color chart with moist soil. The samples were screened through a? mesh screen and a 2 millimeter sieve to recover lithic debris and other artifacts. Samples were oven dried at 105 C. For the particle size analysis a simplified Day Procedure was used, based on hydrometer readings. Soil ph was measured using an electronic ph meter. Total carbon, (LOI, loss on ignition), was determined by heating a 2 gram sample to 600 C for 6 hours, and then comparing the post-combustion weight for total carbon loss. The percent organic carbon was measured using the Walkley-Black method, which involves titrating the samples with ferrous sulfate. The percent organic carbon is then calculated using a mathematical formula based on the amount of potassium dichromate necessary to oxidize the organic carbon.

166 LEITH RESULTS Soil color and texture differentiated individual soil horizons (See Appendix). An Ab horizon occurs between 0 and 30 cmbd (centimeters below datum), there is a diffuse smooth boundary to an argillic Bt horizon extending down to 80 cmbd, seen as an increase in percent clay in the particle size analysis (Figure 4). There is another diffuse smooth boundary between the Bt and Bg horizons, which is a transitional horizon identified by the presence of gleying. The artifacts recovered were Figure 3. View of the Stratigraphic Column and Soil Profile micro-artifacts, most being less than? in size. The artifacts include 13 lithics (flakes and chunks/shatter), 5 small bone fragments, and some charcoal/plant remains, one of which conforms favorably to wild rice (Zizanin aquatica). The largest concentration of artifacts was at the 29-60 cmbd range, with the 6 lithics concentrated at the 30-40 cmbd range (Figure 5). The number of sediment particles larger than 2 millimeter decreased with depth and then increased again at around the 91-112 cmbd depth (Figure 6). The results from the particle size analysis and soil ph measurements (Figure 7) show three definite periods of deposition and stability. There is a former stable surface at around 80 cmbd, with a period of flood deposits of increasing silt to about 40 cmbd. The 0-10

BURIED PRAIRIE SOIL AT THE ERNIE BANK ARCHAEOLOGICAL SITE 167 cmbd depth contains upland sediment as a result of runoff from the slopes in historic times. The thickness, approximately 40 centimeters, as well as the dark color (10YR2-2, 7.5YR2.5-2) and texture of the A-horizon are indicative of a well-developed prairie soil. The total carbon shows the same trends as particle size, with 0-10 cmbd being historic runoff, a stable surface at 20-40 cmbd, and another possible stable surface at about 90 cmbd (Figure 8). There is an increase of organic carbon at about 15 cmbd, and a second increase at 80 cmbd (Figure 9). The total carbon, and organic carbon analysis show a high amount of carbon in the soil, with the majority of it being organically derived. There is up to 10% total carbon at 20 cmbd, 7% of which is organic carbon. These carbon measurements are what would be expected for a well-developed prairie soil.

168 LEITH DISCUSSION There have been several climatic shifts during the Holocene. These shifts cause vegetation changes from boreal forest to prairie, with the drying of the climate. Southwest Wisconsin is part of a transitional ecotone with mixed hardwood forests to the north and prairie to the south (Knox 1972). The prairies are a result of the drier westerlies which begin to be an important factor during the Holocene. This forest/prairie ecotone is very climatically sensitive due to the location at the border of the arctic and pacific (tropical) air masses (Knox 1972). Lake levels around southern Wisconsin were at their lowest between 6,000 to 3,000 years ago, suggesting a drought climate. Pollen samples also show a drier climate as seen in the expansion of the prairie/savanna into southwestern Wisconsin (Baker, et al. 1992). Xeric oak forests dominated Wisconsin s Driftless area during middle to late Holocene time (Baker et al. 1992). These forests were adapted to the drier climate and tended to be sparse groupings of Bur Oak with prairie/savanna dispersed between them. In McDowell s (1982) study of the Brush Creek Valley, in Vernon and Monroe counties, she determined that the Driftless area was covered by lowland hardwood forests and wet prairies on the valley floors, before the land was cleared for agriculture. Studies in the Driftless area as well as surrounding areas (Knox 1972, McDowell 1982, 1983, Baker et al. 1992) have yielded buried paleosols. I focused on the paleosols that were formed in alluvial settings. These tend to be in a sequence with a well-developed paleosol over a silty clay series, then buried under a silt loam (historic alluvium) (Knox 1972). McDowell s (1982) research showed the texture to be silty clay loam to sandy loam at the Brush Creek units. Also important was McDowell s discussion of the formation of the B t horizon in certain units at Brush Creek. By investigating other work in the Midwest she was able to determine the length of time for Bt horizon formation as less than 2300 years but more than 700 years. This fits with the information from Birkeland (1984), who says that the B t horizon can form in as few as 100 years, but takes nearly 10,000 years to reach a steady state. He also states that A horizons can form in just a few years, and reach a steady state in about 100 years (Birkeland 1984). I can only date the soil relatively as having formed between A.D. 1000 and A.D. 1850, giving it roughly 800 years to develop the close to 30centimeters of the A b horizon, and to form a B t horizon. Based on my research I believe that the thick A b horizon in the profile I took, formed under prairie vegetation. The age of the soil that I worked on is younger than those of McDowell (1982) and Baker et al (1992), based on the artifact correlation from MVAC s excavations in 1993. The soil I worked on also was loam/clay loam over sandy loam; also there seem to be a smaller percentage of silt at the Ernie Bank site than at these other sites. The thickness of the A-horizon is indicative of a well-developed prairie soil; this is due to the decomposition of surface litter, as well as sub-surface root decay. Forest soils tend to be thinner because only the litter-fall adds to the thickness of the A-horizon (Birkeland 1984). The particle size data I collected shows a fairly stable amount of silt, around 35% until 40cmbd. From 40cmbd the silt declines as the sand increases, and again at around 80cmbd the silt stays at a relatively stable 20%. The total carbon, and percent organic carbon show a fairly high carbon content in the A b horizon, which steadily drops with depth. This high carbon percentage combined with the thickness, is indicative of a well-developed prairie soil (Birkeland 1984) The organic carbon also increases a little around 80-85cmbd. I think that this increase, as well as the stability in the particle size, and total carbon data at this level indicates another former stable surface.

BURIED PRAIRIE SOIL AT THE ERNIE BANK ARCHAEOLOGICAL SITE 169 Artifacts are found at this depth, but it is possible that they were washed in during a flood episode. I did not find any diagnostic artifacts, as most were micro-artifacts, and I found no ceramics. Snails were noted but did not survive the processes intact. I do think that the evidence supports my hypothesis that this buried soil was a prairie soil. CONCLUSIONS In summary the soil that I analyzed consisted of a dark buried horizon, covering a lighter horizon with an increase in clay, which overrides a horizon with some gleying. I determined these horizons as Ab,Bt,and Bg. The thickness, dark color (10YR2-2, 7.5YR2.5-2), and organic carbon content of the Ab horizon indicate its formation under prairie conditions. The increase in clay content in the upper portion of the B-horizon gives it the argillic designation. The Bg horizon, based on the presence of gleying, represents a second former stable surface. The procedures that I conducted support these conclusions. This is important to archaeologists because the prairie soil is an environmental indicator, i.e. warmer, drier climate. Also the identification of the thick buried A-horizon in the Bad Axe River valley can allow correlation of dates in the valley where radiocarbon dating is not possible. ACKNOWLEDGEMENTS I would like to thank Dr. Dean Wilder for his help on this project. Also Dr. Jim Theler and Dr. Connie Arzigian for reading and commenting on my paper. Also Kathleen Brosius for help in the cataloguing the artifacts that were collected. I would also like to thank Bryce Tollackson for allowing me to use his land for my research. REFERENCES Baker, Richard G., Louis J. Maher, Craig A. Chumbley, and Kent L. Van Zant. 1992. Patterns of Holocene Environmental Change in the Midwestern United States. Quaternary Research 37: 379-389. Birkeland, Peter W. 1984. Soils and Geomorphology. Oxford University Press, New York, New York. Ferring, C. Reid. 1992. Alluvial Pedology and Geoarchaeological Research. In: V.T. Holliday (ed.). Soils in Archaeology. Smithsonian Institution Press, Washington, D.C. p.1-39. Gladfelter, Bruce G. 1985. On the Interpretation of Archaeological Sites in Alluvial Settings. In Archaeological Sediments in Context. Center for the Study of Early Man, Institute for Quaternary Studies, University of Maine, Orono, Maine. P. 41-52. Gee, G.W. and J.W. Bauder. 1979. Particle Size by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Science Society of America Journal 43: 1004-1007. Janitzky, Peter. 1986a. Determination of Soil ph. In: Michael J. Singer and Peter Janitzky (eds.). Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. U.S. Government Printing Office, Washington, D.C. p.19-21. Janitzky, Peter. 1986b. Organic Carbon (Walkley- Black Method). In: Michael J. Singer and Peter Janitzky (eds.). Field and Laboratory Procedures Used in a Chronosequence Study. U.S. Geological Survey Bulletin 1648. U.S. Government Printing Office, Washington, D.C. p. 34-36.

170 LEITH Knox, James C. 1972. Valley Alluviation in Southwestern Wisconsin. Annals of the Association of American Geographers. 62:401-410. McDowell, Patricia F. 1982. Soil Development in Late Wisconsinan and Holocene Valley Deposits, Brush Creek Valley, Wisconsin. In: Quaternary History of the Driftless Area, Field Trip Guidebook No.5. University of Wisconsin Extension, Geological and Natural History Survey, Madison, Wisconsin. P. 136-154. McDowell, Patricia F. 1983. Evidence of Stream Response to Holocene Climatic Change in a Small Wisconsin Watershed. Quaternary Research 19:100-116. Rapp, George Jr., and Christopher L. Hill. 1998. Geoarchaeology. Yale University Press, New Haven, Connecticut. Stein, Julie K.1986. Deposits for Archaeologists. Advances in Archaeological method and Theory 11:337-395 Storer, Donald A. 1983. A Simple High Volume Ashing Procedure for Determination of Soil Organic Matter. Communications in Soil Science and Plant Analysis 15:759-772. Theler, James L. and Robert F. Boszhardt. 2000. The End of the Effigy Mound Culture: The Late Woodland to Oneota Transition in Southwestern Wisconsin. Midcontinental Journal of Archaeology 25:289-312. Waters, Michael R. 1992. Principles of Geoarchaeology. University of Arizona Press, Tucson, Arizona.

171 APPENDIX Table 1. Stratigraphic Profile Depth, Color and Texture. Depth in cm Color Texture 0-5cm strat. Column 10YR3-1 very dark gray loam 5-10cm strat. Column 10YR3-1 very dark gray loam 10-15cm strat. Column 10YR3-2 very dark grayish brown loam 15-20cm strat. Column 10YR2-2 very dark brown loam 20-25cm strat. Column 10YR2-2 very dark brown loam 25-30cm strat. Column 7.5YR2.5-2 very dark brown loam 30-35cm strat. Column 10YR2-2 very dark brown loam 35-40cm strat. Column 7.5YR3-2 dark brown loam to clay loam 40-45cm strat. Column 7.5YR3-3 dark brown loam to clay loam 45-50cm strat. Column 7.5YR3-3 dark brown loam 50-55cm strat. Column 7.5YR3-3 dark brown loam 55-60cm strat. Column 7.5YR3-3 dark brown sandy clay loam 60-65cm strat. Column 10YR3-3 dark brown sandy clay loam 65-70cm strat. Column 10YR3-3 dark brown sandy loam 70-75cm strat. Column 7.5YR3-4 dark brown sandy loam 75-80cm strat. Column 10YR3-3 dark brown sandy loam 80-85cm strat. Column 7.5YR3-4 dark brown sandy loam 85-90cm strat. Column 7.5YR3-3 dark brown sandy loam 90-95cm strat. Column 7.5YR3-3 dark brown sandy loam 95-100cm strat. Column 7.5YR3-3 dark brown sandy loam 100-105cm strat. Column 7.5YR3-3 dark brown sandy loam 105-110cm strat. Column 7.5YR3-3 dark brown sandy loam 110-115cm strat. Column 10YR3-3 dark brown sandy loam 115-120cm strat. Column 10YR3-4 dark brown sandy loam Table 2. Soil Profile Depth, Color and Texture. 0-29cm soil profile 10YR3-2 very dark grayish brown loam 29-91cm(upper) soil profile 10YR3-2 very dark grayish brown loam to clay loam 29-91cm(lower) soil profile 7.5YR3-3 dark brown sandy loam 91-112cm soil profile 7.5YR3-3 dark brown sandy loam 112cm+ soil profile 7.5YR4-3 brown sandy loam to sandy clay loam