Optimal Hydrogen Recycling Network Design of Petrochemical Complex

Similar documents
The Study of Structure Design for Dividing Wall Distillation Column

Temperature Control in Autothermal Reforming Reactor

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Effect of Precipitation on Operation Range of the CO 2

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

History and Status of the Chum Salmon Enhancement Program in Korea

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Simultaneous BOP Selection and Controller Design for the FCC Process

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Journal of Separation Science and Engineering Vol. 1, No. 1, 2009, pp MATLAB

Surface Reaction Modeling for Plasma Etching of SiO 2

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Lecture 12. Transport in Membranes (2)

r*tt7v Progress, Ibe Ur)ft>ersal LaWof J^atare; Th>oagbt, fbe 3olA>er)t of Jier Problems. CHICAGO, SEPTEMBER MRS. ADA FOYE.


Electric Machinery and Apparatus 1 AE1B14SP1. Miroslav Chomát room B3-248

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

n

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Visualization of the Economic Impact of Process Uncertainty in Multivariable Control Design

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

T E C O L O T E R E S E A R C H, I N C.


4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

ESA modelling and cycle design

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Global Optimization of Bilinear Generalized Disjunctive Programs

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

A study on the effect of ball diameter on breakage properties of clinker and limestone

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Chapter 11: Simple Linear Regression and Correlation

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

New Perspectives in Control System Design: Pseudo-Constrained to Market Responsive Control


Control and System Design for Energy Market Responsiveness

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

Donald J. Chmielewski and David Mendoza-Serrano Department of Chemical and Biological Engineering Illinois Institute of Technology

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations

,. *â â > V>V. â ND * 828.

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

A novel mathematical model of formulation design of emulsion explosive

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

Capacitor Placement In Distribution Systems Using Genetic Algorithms and Tabu Search

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

Beechwood Music Department Staff

Bulgarian Academy of Sciences. 22 July, Index


Thank You! $20,000+ Anonymous

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

On the Multicriteria Integer Network Flow Problem

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Solution (1) Formulate the problem as a LP model.

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

Mixed Taxation and Production Efficiency

Have Metropolitan Planning Organizations improved regional policy making? The cases of Kansas City and St. Louis.

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO 2

Donald J. Chmielewski

Colby College Catalogue

New Perspectives in Control System Design: Pseudo-Constrained to Market Responsive Control

A New Steps Sequence Table to Improve the Performance of the Jam Petrochemical H 2 -PSA Industrial Plant

Introduction to Antennas & Arrays

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Magnetic saturation

1K21 LED GR N +33V 604R VR? 1K0 -33V -33V 0R0 MUTE SWTH? JA? T1 T2 RL? +33V 100R A17 CB? 1N N RB? 2K0 QBI? OU T JE182 4K75 RB? 1N914 D?

THE MIDWAY & GAMES GRADE 6 STEM STEP BY STEP POTENTIAL & KINETIC ENERGY MOVE THE CROWDS

1) Silicon oxide has a typical surface potential in an aqueous medium of ϕ,0

Detoxification of wastewater containing As and Sb by hydrothermal mineralization

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

THE 1,040t h MEETING OF THE BRODIE CLUB The 1,040th meeting of the Brodie Club was held at 7:30 pm on S eptember 21, 2010 in R oom 432 of the Ramsay W

한외여과막시스템을이용한금속가공폐수의실험실적처리및현장적용연구

Colby College Catalogue

Pricing Network Services by Jun Shu, Pravin Varaiya

FAIR FOOD GRADE 7 STEM SUGAR RUSH! HOW YOUR BODY WILL PROCESS THAT FRIED TWINKIE

New Perspectives in Control System Design: Pseudo-Constrained to Market Responsive Control

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

A L A BA M A L A W R E V IE W

Module 3: Element Properties Lecture 1: Natural Coordinates

Optimal choice and allocation of distributed generations using evolutionary programming

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

ELE B7 Power Systems Engineering. Power Flow- Introduction

Transcription:

Korean Chem. Eng. Res., Vol. 45, o. 1, February, 2007, pp. 25-31 l s m k n Šk oy ÇmzsÇ Ç p n 151-742 ne k e 56-1 (2006 11o 16p r, 2006 12o 13p }ˆ) Optmal Hydrogen Recyclng etwork Desgn of Petrochemcal Complex Changhyun Jeong, Chul-Jn Lee, Dae-hyeon Km and Chonghun Han School of Chemcal and Bologcal Engneerng, Seoul atonal Unversty,GSan 56-1, Shnlm-dong, Gwanak-gu, Seoul 151-742, Korea (Receved 16 ovember 2006; accepted 13 December 2006) k h o v l o q ro q p l ql p pp, p q~rp l n p. l n p l vop o ˆ rp o q n n, q p l n p. l l o v q q n o m. p l l n p n rr p Ž k, o l n n ˆ rk s p r r l }(source)m n}(snk) q l rp q n o o m. Abstract In a petrochemcal complex, large amount of hydrogen s produced as a by-product and used as a fuel n petrochemcal and ol refnery plants. By recyclng ths byproduct hydrogen as a raw materal, the value of hydrogen can be greatly mproved. Ths paper proposes a desgn methodology for optmal hydrogen recycle network between plants n petrochemcal complex by analyzng the hydrogen pnch, requred cost and constrants. Key words: Hydrogen etwork, Hydrogen Pnch, etwork Modelng, Optmzaton 1. l k ~ rs, l rv, l v p kl p n pp, l l kl ~ p n rp v p p. o v l o q ro q p l ql p pp, q~rp l n p. p l n p l vop o ˆ rp o q n n, q p l n p. q n l l l l n (pnch analyss) p k l l v l m. p Lnhoff ll rp l v sl r k l l p n p [1], m k r r l rp p r lm [2-4]. Towler p l v l n p o To whom correspondence should be addressed. E-mal: chhan@snu.ac.kr }pp n m [5], Alvesm Towler p re ož Ž np o rp p rk m [6]. p p Hallalem Lu ro r l ƒ MILP o p rk m [7]. Lum Zhangp o l rr q p r k m [8]. l l o v r~rp q n o o r p re m. n n l o n s p r, o l n q n ˆ p rk s p l r ep l o v q np o r o m. 2. m n ql q n o Fg. 1l ˆ p k. n q n o n ql n p o 25

26 r} Ëp~vË Ë s Fg. 2. Typcal structure for hydrogen recycle network. Fg. 1. Hydrogen network overvew. rr q n, p p o Žp p k p n. l n ql ~ l np lk, n ql o p p o p o k p k. p r o, q n o p n, p nl rrp q n o l r p rl np. 2-1. om om o v l l n /r p q n o o p p r rp. 1) qp p }(source) rp, n qp n p n} (snk) rp. 2) p l l q n l n, p o rr rp lv, l f n. 3) n l vr q n, rr rp n, p Ž l~ n l p l n. 4) r rr q l rr, n l f n. plp q n p l n p l Fg. 2l ˆ p 2 v n l p. l n p r k p n p qp sq, p p r p l Žp p k o p. l n p k n l n p p o rr q m p o Žp p k k. 2-2. (hydrogen pnch) l l p l v p v l rn ƒ p. k p l, v, ož Ž edš qp l rn lm. o45 o1 2007 2k Fg. 3. Hydrogen composte curve [6, 7]. rl p }(source)m n}(snk) }, p np p p l p }. } p rp p, n} rp. }m n} }kv p Fg. 3 l ˆ } (hydrogen composte curve) p. p p m m lˆ e e p m o p e p rn p rp p l v m. p p r p ˆ d r lp p t. l Fg. 4. Hydrogen surplus dagram [6, 7].

n p t~ p }m n}p r p p, p p n p ˆ. on Fg. 4p pl (hydrogen surplus dagram) p. pl l rp n l o p p ˆ t. p p vrrp np r~rp n seˆv rp rr q p n l r pn p. v, pl l n } p p p n rr n}l p. 2-3. n l n (mathematcal programmng) r p x, r f(x), r s p lv r r. p rp p r s p seˆ xp o kl f(x)p p p xp p } p p. erp ˆ p. Mn x f(x) Subject to h(x) = 0 g(x) 0 where x T =[x 1 x 2 x k ] h T (x) = [h 1 (x) h 2 (x) h n (x)] g T (x) = [g 1 (x) g 2 (x) g m (x)] (1) rp p r m rks l LP(lnear programmng), LP(nonlnear programmng), MIP(mxed nteger programmng), MILP(mxed nteger lnear programmng), MILP (mxed nteger nonlnear programmng) p lv. q n o p o sl pv (bnary varable) m o l nl p MILP p lv. o m s(superstructure) rp o kp rk p, rp s k. o p kr p ov o n}p p } vrrp o l rn rr q o. p rk p r o tl r p rp o }. 3. m k Šk n o v l q n tn p q n p p p llk. lp o l rp p p l o q nl l ppp lp plk. q n r o } o r p r q n p f lp p ppp ˆ. p q n p f l p ~ o l p n, rr o rr q, n o Žp p k q n o n np l, }l q n p kp sr l q n p f lp p l ppp p r o v q n r o 27. l l n r r p p p r l r m. 1) l v rp v o l l. 2) p n p p n n l~l p. 3) l~ p lpv k. 4) o n p k. 5) p n o l~l p p r. 6) o e k }l sq k n, nr n p. 7) q }l pl l f n p. 8) ~ l np q e l o n. 9) rp r rs p ˆ p kp l p l p ˆ p k j l o p f r~rp p ˆ p kp p r. 10) p }(source) = {Î = 1,2,Ë,}p ˆ, p kp W, y. 11) p n}(snk) = {jîj = 1,2,Ë.,M}p ˆ, n p kp, z j. 12) rr r(ntermedate) = {kîk = 1,2,Ë,K}, n p rr. op p l r p r p p r. Max proft functon F = M C W j j = 1 C Compressor C ppe C fuel value W fuel, C fresh W fresh, j C PSA sr }l n} k(w)p sr p f r seˆ o }k. op r l v vep n p. p }(source)l p n n}(snk) vr, rr rp lv, q~rp l n n p. W M W j j p n}(snk)l n }(source) vr, rr rp rr, n l~ p l p p. n = + W, fuel + W = k p n}l p p p ep l lp p. G n n j z j W j + W kj + W fresh, j = W j y + W kj y k + W fresh, j y fresh j = 1 Korean Chem. Eng. Res., Vol. 45, o. 1, February, 2007 M (2) (3) (4) (5)

28 r} Ëp~vË Ë s p v n}l p m p p n}l n s p se k. mn n max ( n}l p n n ) (6) pp. pl rr kp v. pl tn pq n p ˆ m nr p q p k rk ˆ, q lm p p. mn n max z j z j z j ( n}l p n n ) (7) p l n l p k rr l r ks p. M j = 1 W fresh, j W k = 1 + = Pnch 3-1. h} (compressor) o o k p p p lrk. k p nr np, C Compressor = 0.746 P bhp C kwh h year µ P bhp : brake horse power C kwh : electrcty cost h year : operatng hour µ: effcency Brake horse Power Peter and Tmmerhaus p ~p l k l p p rk m [10]. 3.03 10 5 --------- γ P γ bhp = ---------------------------P (10) ηγ ( 1 n F -------- out 1 ) P n γ: rato of specfc heat of gas at constant pressure to specfc heat of gas at constant volume η: effcency P n : ntake pressure P out : fnal delvery pressure F: the flowrate beng compressed k l np Marshall and Swft ndexl p p r l p. a, b: cost parameter o45 o1 2007 2k γ 1 C comp [ kus ] = a comp + b comp Power comp [ kw] (8) (9) (11) 3-2. PSA rr t v p PSA(pressure swng adsorpton), (membrane systems), rm (cryogenc systems) p. p p o pn l p l r p n. rp rp ˆ p rrp k rp kr, e, kp p v l l r. rr q l tn pq q l p R = ( 1 θ) ------------------------ 1 ( P H P L )y f R: Hydrogen recovery θ: Adsorbent selectvty between 0 and 1 P H, P L : hgh and low pressure of PSA y PSA,f : PSA feed purty (12) pp l rr p p ˆ p. W k,fuel = ( 1 R) W k, (13) p rr rl p }l p m kp v p. W n n k y k = W k y ( rr rp lm p v v) (14) mn n max W k W k W k (rr p n n ) (15) mn max y y ( p n ) (16) k n y k k o PSA q n o k p rr p m k, o p rr, p k rr p k, q l n, q p nr s p. p n l p PSA q p q n n r nl m p. Ruthven p rr q p np r Shortcut p rk m [9]. Towler p rk Shortcut p q p nr s p re [5]. 0.4330 C PSA [ US ] = --------------- + --------------- 0.2986 C F n,psa Y Z PSA = a PSA + b PSA F n,psa (17) F: flowrate Y: recovery yeld Z: feed mole fracton of hydrogen a,b: cost data 3-3. (ppelne) o o q Žp pp e n. q l r p pp l pv, q v p o pp l p p n p. sp o l~l pp n n, p np p. Žp p np Žp p v l p. Žp p v p r n o~p, o, l p r.

Žp pp nl ep Peters and Tmmerhaus rk p Žp v p r l p r [10]. Parker Žp p nl Žp p q n, n, ˆ q p l e rp l p np rk m [11]. C Ppelne (da, length) = [a(da) 2 + b(da) + c](length) + d (18) da: ppe dameter(nch) length: nstalled dstance(mles) a,b,c,d: cost data Žp p v p l r. Žp p nl k p p Žp p v p nl tp v o lv p kl p v p v r p p. o vp n, l v Žp pp o q l. l vp n, p Œq Žp (ppe rack)l p np v lp. Žp pp Ž p p p k. Fg. 5p p, Žp p p l p r q, vr p Žp p vr p Žp. 3-4. o v p p, }l d, LPG p o l dž v pp ep k 70Í p p v p. p rp p o o p, n ož Žp n, q n, ˆ nr n p l p r. pt o p p v tp 80Í p p o e p q p p r rp v p. pl p p rp vrrp p m 30~50Í p r. p p p 80Íp p r, p l p n l p p r. o v q n r o 29 4. q n o l p Table 1. p lp qp 6 p, n p r p 5 p. pnl p p l ~ sq, p 99.9999Í p p r. o o n }m n} p Table 2l ˆ p. 4-1. tlv rl Fg. 6. o v l n p (99Í p ) p l pl l l pl p p(-)p p Table 1. Process data of snks and sources Flowrate(m 3 /hr) Purty( ) Source 1 10,000 99.9999 2 15,000 99 3 12,000 95 4 15,000 95 5 8,000 75 6 10,000 75 Snk A 15,000 99.9999 B 25,000 95 C 15,000 99 D 8,000 99 E 10,000 99.9999 Table 2. Dstances between sources and snks (km) Snk A Snk B Snk C Snk D Snk E Source 1 6 2 1 3 12 Source 2 3 1 4 6 15 Source 3 15 11 8 6 3 Source 4 11 7 4 2 7 Source 5 1 5 8 10 19 Source 6 13 9 6 4 5 Fg. 5. Evaluatng dstance between sources and snks. Fg. 6. Constructon of a hydrogen composte curve and a surplus dagram. Korean Chem. Eng. Res., Vol. 45, o. 1, February, 2007

30 r} Ëp~vË Ë s Fg. 7. Feasble hydrogen composte curve and a surplus dagram. ˆ p p p. p q o o p k pnl p p kp n p k t. q o l }m n}p p l p p. }(source) l p f pl l p kp p e rp ˆ p p p p p rp. Fg. 7p p } ˆ n lt p. Òp n n l o p ppp p p n ˆ p, Òp n rp ˆ n l p p r p np. rp n l n p p k t v p. rp p p kp. r k p r r l rr o rr q p n p k t. rr q l rr n l p p m l PSA p n p r p. p l r p n p r l rk s p l r o l t n l p. 4-2. m k n Šk q n o l r rp m s(superstructure) Fg. 2l ˆ p. n q n r o rp n p p r o p p kp pp p p l. p r~rp p p rr n l p k p, r r l np Table 3. Hydrogen network matrx wthout purfcaton process Snk A Snk B Snk C Snk D Snk E Fuel Source 1 10,000 0 0 0 0 0 Source 2 0 0 15,000 0 0 0 Source 3 0 10,000 0 0 0 2,000 Source 4 0 15,000 0 0 0 0 Source 5 0 0 0 0 0 8,000 Source 6 0 0 0 0 0 10,000 Fresh 5,000 0 0 8,000 10,000 0 o45 o1 2007 2k Table 4. Hydrogen network matrx wth purfcaton process Snk A Snk B Snk C Snk D Snk E Fuel Source 1 2,000 0 0 8,000 0 0 Source 2 0 0 15,000 0 0 0 Source 3 0 10,000 0 0 0 0 Source 4 0 15,000 0 0 0 0 Source 5 0 0 0 0 0 0 Source 6 0 0 0 0 0 0 Fresh 3,000 0 0 0 0 0 PSA 1 0 0 0 0 0 0 PSA 2 0 0 0 0 0 0 PSA 3 2,000 0 0 0 0 0 PSA 4 0 0 0 0 0 0 PSA 5 8,000 0 0 0 0 0 PSA 6 0 0 0 0 10,000 0 p ~rp o p p. r (solver) What s Best n l p m. Table 3p p np rn r r l r o (matrx)p. p p }l n} kl ~rp r ˆ. Table 4 rr q l o p. PSA p }l rr q rr n} kp ˆ. v }l q, q l n } o p. p rk s l p r p m l rk s p seˆ n pp p. p l p v kp n rp kp rp l l n p p kp t p p. q np l r~rp rr ppp rlv. p rk s p l n}p p } p p p s r r. rr q o p l v kp nm srp p v k. p p n p p rr l rk s p l, o srp l m p v, nl o l qp ppp p p. o l rrp Table 5l ˆ p. o v kp nm, o v q n r o n p Œq np rn l 190lol 330lop lp p. Œq le 0.4~0.6 p ˆ Œq nl Ž rr v ppp k p. p l fp l om l p l ~ l op l p r. q B-Cop l p, p l fp p k 40Í p lv o p f rrp pp p lp p. l op p o p m p p

o v q n r o 31 Table 5. Hydrogen network results Exstng etwork (no network) ew network 1 (wthout PSA) ew network 2 (wth PSA) Hydrogen Purchased Costs ƒ 156 bllon/yr ƒ50 bllon/yr ƒ6.5 bllon/yr Hydrogen Fuel value ƒ 70 bllon/yr ƒ17 bllon/yr ƒ0 bllon/yr Captal costs Ppelne - -ƒ8 bllon/yr -ƒ14 bllon/yr PSA - - -ƒ7 bllon/yr Compressor(operatng) - -ƒ0.1 bllon/yr -ƒ0.2 bllon/yr Fuel costs - -ƒ53 bllon/yr -ƒ70 bllon/yr Hydrogen Sellng Proft - ƒ76 bllon/yr ƒ111 bllon/yr EP(economc potental) - ƒ19 bllon/yr ƒ33 bllon/yr Payback perod - 0.4 years 0.6years l l op p d p n ˆ p. l l rk q n o p p p p l fp r l p p, l p p kr kv n q n l o n l f n n j rrp. p l m p o v l n q n n p rrp r m p Ž, pl rp q n o p q nl sp kp n p Ž. 5. l l o v l l n p np p p p o r r o p re m. p o r p o }(source)m n}(snk) rp l o k tl pn o l n p kp rp l n o p np r neˆ pl. p p rr p r, o p np o q n p n r l ~rp o m. re o l pl p np l rrp ppp v p p p. q p o kp rk mv l ql rn o q p p v, r rp q rn, rk o l lp n l l m vp n. l lqo ~r vo (KCPC)m n k l p k l (BK21), l o (KIST), l v (l v qo l), q ( r l, R01-2004-000-10345-0), q vr pm l (AEBRC, R11-2003-006) p l vop lp pl. y 1. Lnhoff, B., Townsend,D.W., Boland, D., Hewtt, G. F., Thomas, B. E. A., Gut, A. R. and Marsland, R. H., User Gude on Process Integraton for the Effcent Use of Energy, Ins. Chem. Eng., Rugby, UK (1982). 2. Lnhoff, B., Pnch Analyss: A State-of-the-Art Overvew, Chem. Eng. Res. Des., 71, 503-522(1993). 3. Shenoy, U. V., Heat Exchanger etwork Synthess: Process Optmzaton by Energy and Resource Analyss, Gulf Publshng Company, Houston(1995). 4. Smth, R., Chemcal Process Desgn, McGraw-Hll, Y(1995). 5. Towler, G. P., Mann, R., Serrere, A. J-L. and Gabaude, C. M. D., Refnery Hydrogen Management: Cost Analyss of Chemcally- Integrated Facltes, Ind. Eng. Chem. Res., 35(7), 2378-2388(1996). 6. Alves, J. J. and Towler, G. P., Analyss of Refnery Hydrogen Dstrbuton Systems, Ind. Eng. Chem. Res., 41(23), 5759-5769 (2002). 7. Hallale,. and Lu, F., Refnery Hydrogen Management for Clean Fuels Producton, Adv. Enc. Res., 6, 81-98(2001). 8. Lu, F. and Zhang, F., Strategy of Purfer Selecton and Integraton n Hydrogen etworks, Chem. Eng. Res, Des., 82(20), 1315-1330(2004). 9. Ruthven, D., Farooq, S. and Knaebel, K., Pressure Swng Adsorpton, VCH, Y(1994). 10. Peters, M. and Tmmerhaus, K., Plant Desgn and Economcs for Chemcal Engneers, McGraw-Hll, Y(1991). 11 Parker,., Usng atural Gas Transmsson Ppelne Costs to Estmate Hydrogen Ppelne Costs, Ol & Gas Journal s annual Ppelne Economcs Report(1991-2003). Korean Chem. Eng. Res., Vol. 45, o. 1, February, 2007