Semi Empirical Force Fields and Their Limitations. Potential Energy Surface (PES)

Similar documents
Potential Energy (hyper)surface

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

TOPOLOGIES AND FORCE FIELD PARAMETERS FOR NITROXIDE SPIN LABELS

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Structural Bioinformatics (C3210) Molecular Mechanics

MD EXPERIMENT. Initialization : Relaxation : Equilibration : Productive run: Analysis : building molecular system; initial coordinates

Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Molecular Mechanics. Yohann Moreau. November 26, 2015

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Scuola di Chimica Computazionale

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Electronic Supplementary Information for A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials

Computational Biology & Computational Medicine

The Molecular Dynamics Method

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Force Fields for MD simulations

The Molecular Dynamics Method

CHEM 498Q / CHEM 630Q: Molecular Modeling of Proteins TUTORIAL #3a: Empirical force fields

Lecture 11: Potential Energy Functions

CHEM 498Q / CHEM 630Q: Molecular Modeling of Proteins TUTORIAL #3a: Empirical force fields

T6.2 Molecular Mechanics

Parameterizing a Novel Residue

CE 530 Molecular Simulation

Molecular Simulation II. Classical Mechanical Treatment

Subject of the Lecture:

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

The Force Field Toolkit (fftk)

read rtf card append * Initial topology guesses generated by * CHARMM General Force Field (CGenFF) program version 0.9.

6.#Molecular#Mechanics#and# Molecular#Dynamics#Simula5on# MOLECULAR)MECHANICS) Determinant#of#Structure#(or#Lack#of#It)# Water#

Determining Force Fields

Applications of Molecular Dynamics

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Simulation II

Determining Force Fields

Solutions to Assignment #4 Getting Started with HyperChem

1 Contents. 1. Contents i. 1. Introduction Forcefields 9

Why study protein dynamics?

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Molecular Simulation III

Multiscale Materials Modeling

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Computational Methods. Chem 561

Molecular Mechanics. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology. January 2001

Chapter 11 Molecular Mechanics

The Molecular Dynamics Method

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

Nanotube AFM Probe Resolution

Molecular Mechanics, Dynamics & Docking

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii

Revised CHARMM Force Field Parameters for Iron- Containing Cofactors of Photosystem II

COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds

Molecular Mechanics / ReaxFF

Free Radical-Initiated Unfolding of Peptide Secondary Structure Elements

Biomolecular modeling I

TOPOLOGY FILE TUTORIAL

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3.

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D.

Born-Oppenheimer Approximation

Computer simulation of Biological Systems

Biomolecular modeling I

Supporting information of Self-Assembly, Structure and Pi- Conjugation at the Interface of Poly-3-Hexylthiophene and Carbon Nanotubes

Atomistic Modeling of DNA and Protein Structures

Dominant Paths in Protein Folding

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Introduction to Vibrational Spectroscopy

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Conformational Geometry of Peptides and Proteins:

An Informal AMBER Small Molecule Force Field :

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

k θ (θ θ 0 ) 2 angles r i j r i j

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects

Dynamics. capacities of. (A.I.1) (E b ), bond. E total stretching (A.I.2) (A.I.3) A.I.1. Ebond force (A.I.4) (A.I.5)

Force fields in computer simulation of soft nanomaterials

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Rotamers in the CHARMM19 Force Field

Water models in classical simulations

Advanced Quantum Chemistry III: Part 6

Molecular dynamics simulation of Aquaporin-1. 4 nm

The chemical bond The topological approach

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Carbon Compounds. Chemical Bonding Part 2

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Atomic and Molecular Dimensions

Journal Name ARTICLE. ESI for: CHARMM force field parameterization protocol for selfassembling peptide amphiphiles: The Fmoc moiety

COSMO-RS Theory. The Basics

Density Functional Theory

Structure Determination by NMR Spectroscopy #3-1

Supplementary Material for A Hybrid Potential Simulation of the Acylation of Enterococcus faecium L,D-transpeptidase by Carbapenems

Transcription:

Semi Empirical Force Fields and Their Limitations Ioan Kosztin Beckman Institute University of Illinois at Urbana-Champaign Potential Energy Surface (PES) Schrödinger equation: H T Ψ( r, = E Ψ( r, H = K + K T n e + T V ( r, Born-Oppenheimer approx. Ψ( r, = ψ( r Θ( Equation of motion for electrons: ( Ke + V ) ψ( r, = Ee( ψ( r, PES quantum Equation of motion for nuclei: (motion on the PES) classical (MD) [ K E ( ] Θ( = E Θ( n + e T m d 2 R / dt 2 = E ( e 1

Classical Force Fields Consist of: 1. Analytical form of the interatomic potential energy U=E e ( as a function of the atomic coordinates of the molecule 2. Parameters which enter U The force field is fit to experimental data from a small set of molecules The molecule is considered to be a collection of atoms held together by simple elastic (harmonic) forces. The forces are given by the gradients of the potential energy with respect to the internal coordinates of the molecule. Components of a Force Field Any force field contains the necessary building blocks for the calculation of energy and force: - a list of atom types - a list of atomic charges - rules for atom-types - functional forms of the components of the energy expression - parameters for the function terms - rules for generating parameters that have not been explicitly defined (for some force fields) - a defined way of assigning functional forms and parameters (for some force fields) 2

Force Field Energy Expression General form: E = E bond + E angle + E torsion + E nonbond + E other Force fields differ: - in parameters and cross terms - methods of parameterization Types of Force Fields Classical (first-generation) force fields CHARMm AMBER CVFF (consistent valence force field) Second-generation force fields Rule-based force fields Special-purpose force fields 3

Force Field Variety MMFF MM2 MSI Charmm Small Molecules CFF CVFF CFF91 Proteins Nucleic acids Charmm27 Amber Langley The CHARMm Force Field 4

The CHARMm Energy Function: Bonded Terms E bond bond-stretching potential energy E 2 = k ( r r ) 0 bond b E θ angle-bending potential energy E θ = θ k ( θ θ ) 2 0 E UB Urey-Bradley term E UB = K ( S S ) 0 UB 2 The CHARMm Energy Function: Bonded Terms E dih dihedral angle potential energy E φ K = φ [1 + cos( nφ δ)] E impr improper dihedral angle potential energy E ω k = ω ( ω ω 2 0 ) 5

The CHARMm Energy Function: Nonbonded Terms E elec - electrostatic energy E elec = i j i> j ε rij E vdw - Van der Waals energy q q E vdw = R ε r min ij ij 12 R r min ij ij 6 External Files RTF Residue Topology Files Store information about atom mass, atom type, partial charges, connectivity, internal coordinates, residue definitions PRM parameter files Contain parameters for force constants, equilibrium geometries, van der Waals radii, other data PSF Protein Structure Files Files actually used by CHARMm, force field dependent, contain information from the RTF files, have a hierarchical organization of atoms, residues, segments 6

External Files Atoms have different environments N (N peptide N) C (CB aliphatic sp3 C) C (CA aliphatic sp3 C) C (C polar C) NH1 CT1 CT3 O (O carbonyl O) C MASS 10 HS 1.00800 H! thiol hydrogen MASS 11 HE1 1.00800 H! for alkene; RHC=CR MASS 20 C 12.01100 C! carbonyl C, peptide backbone MASS 21 CA 12.01100 C! aromatic C MASS 22 CT1 12.01100 C! aliphatic sp3 C for CH ------- (missing data here) RESI ALA 0.00 ATOM N NH1-0.47! ATOM HN H 0.31! HN-N ATOM CA CT1 0.07! HB1 ATOM HA HB 0.09! /! HA-CA--CB-HB2 ATOM CB CT3-0.27! \ ATOM HB1 HA 0.09! HB3 ATOM HB2 HA 0.09! O=C ATOM HB3 HA 0.09!! ATOM C C 0.51 ATOM O O -0.51 BOND CB CA N HN N CA BOND C CA C +N CA HA CB HB1 CB HB2 CB HB3 DOUBLE O C IMPR N -C CA HN C CA +N O DONOR HN N ACCEPTOR O C IC -C CA *N HN 1.3551 126.4900 180.0000 115.4200 0.9996 IC -C N CA C 1.3551 126.4900 180.0000 114.4400 1.5390 IC N CA C +N 1.4592 114.4400 180.0000 116.8400 1.3558 IC +N CA *C O 1.3558 116.8400 180.0000 122.5200 1.2297 IC CA C +N +CA 1.5390 116.8400 180.0000 126.7700 1.4613 IC N C *CA CB 1.4592 114.4400 123.2300 111.0900 1.5461 IC N C *CA HA 1.4592 114.4400-120.4500 106.3900 1.0840 IC C CA CB HB1 1.5390 111.0900 177.2500 109.6000 1.1109 IC HB1 CA *CB HB2 1.1109 109.6000 119.1300 111.0500 1.1119 IC HB1 CA *CB HB3 1.1109 109.6000-119.5800 111.6100 1.1114 RTF Files Alanine 7

RTF Files: H 2 O & Shake RESI TIP3 0.000! tip3p water model! generate using noangle nodihedral ATOM OH2 OT -0.834 ATOM H1 HT 0.417 ATOM H2 HT 0.417 BOND OH2 H1 OH2 H2 H1 H2! the last bond is needed for shake ANGLE H1 OH2 H2! required ACCEPTOR OH2 RESI GUA -1.00! O6 ATOM P P 1.50! ATOM O1P ON3-0.78! C6 ATOM O2P ON3-0.78! / \ ATOM O5' ON2-0.57! H1-N1 C5--N7\\ ATOM C5' CN8B -0.08! C8-H8 ATOM H5' HN8 0.09! C2 C4--N9/ ATOM H5'' HN8 0.09! / \\ / \! H21-N2 N3 \ ATOM C4' CN7 0.16! \ ATOM H4' HN7 0.09! H22 \ ATOM O4' ON6B -0.50! \ ATOM C1' CN7B 0.16! O1P H5' H4' O4' \ ATOM H1' HN7 0.09! \ / \ \! -P-O5'-C5'---C4' C1' ATOM N9 NN2B -0.02! \ / \ ATOM C4 CN5 0.26! O2P H5'' C3'--C2' H1' ATOM N2 NN1-0.68! / \ / \ ATOM H21 HN1 0.32! O3' H3'O2' H2'' ATOM H22 HN1 0.35! ATOM N3 NN3G -0.74! H2' ATOM C2 CN2 0.75 ATOM N1 NN2G -0.34 ATOM H1 HN2 0.26 ATOM C6 CN1 0.54 ATOM O6 ON1-0.51 ATOM C5 CN5G 0.00 ATOM N7 NN4-0.60 ATOM C8 CN4 0.25 ATOM H8 HN3 0.16 ATOM C2' CN7B 0.14 ATOM H2'' HN7 0.09 ATOM O2' ON5-0.66 ATOM H2' HN5 0.43 ATOM C3' CN7 0.01 ATOM H3' HN7 0.09 ATOM O3' ON2-0.57 RTF Files 8

RESI GNA -1.00! O6 ATOM P P 1.50! ATOM O1P ON3-0.78! C6 ATOM O2P ON3-0.78! / \ ATOM O5' ON2-0.57! H1-N1 C5--N7\\ ATOM C5' CN8B -0.08! C8-H8 ATOM H5' HN8 0.09! C2 C4--N9/ ATOM H5'' HN8 0.09! / \\ / \! H21-N2 N3 \ ATOM C4' CN7 0.16! \ ATOM H4' HN7 0.09! H22 \ ATOM O4' ON6B -0.50! \ ATOM C1' CN7B 0.16! O1P H5' H4' O4' \ ATOM H1' HN7 0.09! \ / \ \! -P-O5'-C5'---C4' C1' ATOM N9 NN2B -0.02! \ / \ ATOM C4 CN5 0.26! O2P H5'' C3'--C2' H1' ATOM N2 NN1-0.68! / \ / \ ATOM H21 HN1 0.32! O3' H3'N2' H2'' ATOM H22 HN1 0.35! / \ ATOM N3 NN3G -0.74! HN2' HN2'' ATOM C2 CN2 0.75 ATOM N1 NN2G -0.34 ATOM H1 HN2 0.26 ATOM C6 CN1 0.54 ATOM O6 ON1-0.51 ATOM C5 CN5G 0.00 ATOM N7 NN4-0.60 ATOM C8 CN4 0.25 ATOM H8 HN3 0.16 ATOM C2' CN7B 0.14 ATOM H2'' HN7 0.09 ATOM N2' NN1-0.66 ATOM HN2' HN1 0.21 ATOM HN2''HN1 0.22 ATOM C3' CN7 0.01 ATOM H3' HN7 0.09 ATOM O3' ON2-0.57 Modified RTF File RTF Files Differences between RTF s for single molecules and residues First residue converted to N-terminus NH 3 + Last residue converted to C-terminus CO O Special atoms -C, -O, +N, +H, +CA Refers to atoms in residues preceding (-) or following (+) 9

BONDS!V(bond) = Kb(b - b0)**2!kb: kcal/mole/a**2!b0: A!atom type Kb b0! C C 600.000 1.3350! ALLOW ARO HEM! Heme vinyl substituent (KK, from propene (JCS)) CA CA 305.000 1.3750! ALLOW ARO! benzene, JES 8/25/89 ------------------------- (missing data here)--------------- ANGLES!V(angle) = Ktheta(Theta - Theta0)**2!V(Urey-Bradley) = Kub(S - S0)**2!Ktheta: kcal/mole/rad**2!theta0: degrees!kub: kcal/mole/a**2 (Urey-Bradley)!S0: A!!atom types Ktheta Theta0 Kub S0! CA CA CA 40.000 120.00 35.00 2.41620! ALLOW ARO! JES 8/25/89 CE1 CE1 CT3 48.00 123.50 Parameter Files AMBER Force Field 10

Consistent Valence Force Field The Power of the Force Field Approach 1) Force field-based simulations can handle large systems, are several orders of magnitude faster (and cheaper) than quantum-based calculations. 2) The analysis of the energy contributions can be done at the level of individual or classes of interactions. 3) Modification of the energy expression to bias the calculation. 11

Limitations of the Force Field Approach Applications beyond the capability of classical force field methods include: Electronic transitions (photon absorption). Electron transport phenomena. Proton transfer (acid/base reactions). 12