BASE PLATE CONNECTIONS

Similar documents
Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

Advanced Training Steel Connections

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17

SKILLS Project. October 2013

Joint resistance M j,rd Elastic limit 2/3 M j,rd

Structural Steelwork Eurocodes Development of A Trans-national Approach

Equivalent T-stubs (Component Method) as per DIN EN

SIMPLIFIED FORMULAS FOR ASSESSMENT OF STEEL JOINT FLEXIBILITY CHARACTERISTICS

TAMPERE UNIVERSITY OF TECHNOLOGY ELENA RUEDA ROMERO FINITE ELEMENT SIMULATION OF A BOLTED STEEL JOINT IN FIRE USING ABAQUS PROGRAM

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach

Example 4: Design of a Rigid Column Bracket (Bolted)

Structural Steelwork Eurocodes Development of a Trans-National Approach

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Joints in steel construction: Moment-resisting joints to eurocode 3

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

[5] Stress and Strain

IDEA StatiCa Connection

Project data Project name Project number Author Description Date 26/04/2017 Design code AISC dome anchor. Material.

ON THE DESIGN OF A STEEL END-PLATE BEAM-TO-COLUMN BOLTED JOINT ACCORDING TO PN-EN

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Concrete in compression and base plate in bending

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

Fundamentals of Structural Design Part of Steel Structures

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Component Method for Base Plate

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Advanced Analysis of Steel Structures

A Simplified Method for the Design of Steel Beam-to-column Connections

IDEA StatiCa Connection

INTRODUCTION TO STRAIN

Design of AAC wall panel according to EN 12602

3. Stability of built-up members in compression

Basis of Design, a case study building

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

CONNECTION DESIGN. Connections must be designed at the strength limit state

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

DESIGN OF END PLATE JOINTS SUBJECT TO MOMENT AND NORMAL FORCE

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

C:\Users\joc\Documents\IT\Robot EC3 6_2_1 (5)\Eurocode _2_1(5) Concentrated Load - Rev 1_0.mcdx. γ M γ M γ M2 1.

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

JointsForTekla Ver January

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS

Annex 1: Symbols and units

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

Steel connections. Connection name : MEP_BCF_W=14.29[mm]_W=6.35[mm]_tp=63.5[mm]_N=0_N=2_N=0_N=1_W=14.29[mm]_W=14.29[mm]_W=14.29[ mm] Connection ID : 1

N = Shear stress / Shear strain

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

1C8 Advanced design of steel structures. prepared by Josef Machacek

Unit I Stress and Strain

CONNECTIONS WITH FOUR BOLTS PER HORIZONTAL ROW Application of Eurocode 3

Annex - R C Design Formulae and Data

Mechanics of Materials Primer

9.5 Compression Members


7 STATICALLY DETERMINATE PLANE TRUSSES

Mechanics of Structure

Finite Element Modelling with Plastic Hinges

Design of Beams (Unit - 8)

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

The University of Melbourne Engineering Mechanics

PLASTIC RESISTANCE OF L-STUBS JOINTS SUBJECTED TO TENSILE FORCES

my!wind Ltd 5 kw wind turbine Static Stability Specification

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Structural Steelwork Eurocodes Development of a Trans-National Approach

COLUMNS: BUCKLING (DIFFERENT ENDS)

Practical Design to Eurocode 2

C6 Advanced design of steel structures

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

Design of a Multi-Storied RC Building

ENCE 455 Design of Steel Structures. III. Compression Members

Downloaded from Downloaded from / 1

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

DESIGN GUIDES FOR HIGH STRENGTH STRUCTURAL HOLLOW SECTIONS MANUFACTURED BY SSAB - FOR EN 1090 APPLICATIONS

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

CALCULATION MODE FOR ALUHD23/SH18 Traction and shear aluminium plate for Alufoot R system

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Entrance exam Master Course

2012 MECHANICS OF SOLIDS

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Generation of Biaxial Interaction Surfaces

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

Transcription:

SKILLS Project

BASE PLATE CONNECTIONS

LEARNING OUTCOMES Design process for pinned and fixed column base joints Base-plate resistance Anchor bolt resistance Concrete resistance Weld resistance Application of the component method to pinned and fixed column base joint. 3

LIST OF CONTENTS Introduction Pinned column base joint Rigid column base joint Application Conclusion 4

INTRODUCTION

INTRODUCTION Typical pinned column base joint Column Grout Base plate Concrete foundation Anchor bolt 6

INTRODUCTION Typical fixed column base joint Column Base plate Anchor bolts Concrete foundation 7

INTRODUCTION Analysis of the joint according to EN 1993-1-8 Joint is modelled by a typical components : T-stub Two models for loadings : Resistance in compression : T-stub in compression with concrete, Resistance in tension : T-stub in tension (anchor bolts + base plate + column web). F T,Rd F T,Rd F T l eff 8

INTRODUCTION Recommended partial safety factors according to EN 1993-1-8 : g M0 =1 : column web in tension, bending of the base-plate g M2 =1,25 : Anchor bolts in tension/shear, weld resistance Recommended partial safety factors according to EN 1992-1-1 : g C =1,5 : Concrete in compression, bond anchorage resistance The national annexes may give indications 9

PINNED COLUMN BASE JOINT

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Evaluation of the resistance in compression of T-stubs in contact with concrete. EN 1993-1-8 6.2.5 Resistance in compression of the joint : association of resistances of T-stubs in compression. F c,rd Concrete resistance reached : fjd l eff f jd b eff Web T-stub : F c,bw,rd 11 Flange T-stubs : F c,fc,rd

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Foundation bearing strength f a b f jd bf j cd EN 1993-1-8 6.2.5 EN 1992-1-1 6.7 Where: a bf b j coefficient which accounts for diffusion of concentrated force within the foundation. may be taken as 2/3 (see Note) f cd Concrete design strength : fck f ck a cc = 1 g c = 1,5 fcd acc g c Compressive cylinder strength of concrete at 28 days 12

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Expression of a bf : a bf d e e f h b = min 1+ ; 1+2 ; 1+2 ; 3 max( hp, bp ) h p b p Note : b j = 2/3 if : e m e m 50 mm min0,2bp 0,2h p d f Axis x-x e h Strength of grout 0,2 f cd Axis y-y e b Else : f jd f cd bp Axis z-z 13 hp

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Resistance in compression of a T-stub : F f b l C,Rd jd eff eff EN 1993-1-8 (6.4) Where: l eff Effective length of the T-stub b eff Effective width of the T-stub such as : c Additional bearing width of the flange : f yp g M0 =1 c t p f jd yp 3f g M0 Yield strength of base plate l eff b t c eff 2 F c,rd t p b eff 14 c t c f jd

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Large and short projections : EN 1993-1-8 6.2.5 t = t fc t = t fc or t wc b eff b eff t p t p f jd f jd b c c c Flange T-stub : Flange T-stub : b t c bc beff t fc2c eff fc 15 c c a) Short projection b) Large projection Web T-stub : b t c eff wc 2

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Resistance in compression of a flange T-stub : Where: l min b ; b 2c eff p fc b min c; h h /2 t min c; h /2 t F c,fc,rd jd eff eff eff p c fc c fc f b l c b eff c b eff c c c t fc l eff b fc b p l eff b fc b p c c h c h p Large projection 16 h c h p Short projection

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Resistance in compression of the web T-stub : Where: l h 2t 2c 0 eff c fc b 2c t eff wc F c c f b l c,bw,rd jd eff eff c l eff t wc c c b eff t fc h c 17

PINNED COLUMN BASE JOINT - RESISTANCE IN COMPRESSION Resistance in compression of the joint : N 2F F C,Rd c,fc,rd c,bw,rd NC,Rd fjd hcpb cp lcp bcp twc 2c Where : h min h ; h 2c cp p c b min b ; b 2c cp p fc c c t fc c l h 2t 2c 0 cp c fc t wc b fc b p c h c h p 18

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Joint modelled by a T-stub (anchor bolts, base plate) in tension Evaluation of the tensile resistance of the T-stub 6 possible failure modes : Base plate/anchor bolts (modes 1, 2, 1-2 and 3) Column web (mode 4) and weld F T,Rd F T,1,Rd F T,Rd F T,Rd l eff b) 19

Failure modes of base plate/anchor bolts F T,1,Rd PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Mode 1 : Yielding of the base plate Mode 2 : Failure of anchor bolts F T,1,Rd F T,1,Rd F T,2,Rd F T,2,Rd Prying effect Q Q Q Q No prying effect Mode 1-2 : Yielding of the base plate F T,1-2,Rd Mode 3 : Failure of anchor bolts F T,3,Rd F T,3,Rd F T,3,Rd F T,4,Rd F T,4,Rd 20

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Mode 4 : Yielding of the column web in tension d F T,4,Rd The prying effect has an influence on the choice of failure modes. Failure modes 1 and 2 are not possible without prying force and are replaced by failure mode 1-2. 21

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Prying effect and failure modes : EN 1993-1-8 Table 6.2 Prying effect Presence of prying effect Absence of prying effect F F T,1,Rd T,Rd F T,Rd F T,2,Rd Deformation Q Q Condition L b L * b L b > L * b Resistance of the T-stub F T,Rd FT,1,Rd ; FT,2,Rd min FT,3,Rd ; FT,4,Rd F T,Rd T,1-2,Rd; T,3,Rd min F F FT,4,Rd F F T,3,Rd F T,4,Rd F

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Anchor bolt elongation length : L 8d e t t 0,5 k b m p wa EN 1993-1-8 Table 6.2 Where: t wa d Thickness of the washer Anchor bolt diameter base plate grout k t p e m Concrete 8d 23

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Limit anchor bolt elongation length : Where: A s Tensile stress area of one anchor bolt l eff,1 Effective length : l =min l ; l eff,1 eff,cp eff,nc m p/2 t /2 0,8 2a wc w 8,8m A 3 * s b 3 leff,1tp L t wc a w p/2 m EN 1993-1-8 Table 6.2 Base plate t p 24

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Effective lengths of the T-stub : Circular mechanism e m m e Non circular mechanism e m m e EN 1993-1-8 Table 6.6 p Yield line t wc l eff,cp 2 m eff,nc 4 1,25 l m e 25

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Resistance of modes 1 and 1-2: EN 1993-1-8 Table 6.2 Failure mode Mode 1 Mode 1-2 F T,1,Rd T,1,Rd F T,1-2,Rd F T,2,Rd Yielding of the base plate m Q Q Resistance of the T-stub F T,1,Rd 4M pl,1,rd m F T,1-2,Rd 2M pl,1,rd m Where: t f M m l m l l l 2 p yp pl,1,rd pl,rd eff,1; pl,rd ; eff,1=min eff,cp; eff,nc 4g M0 F T,3,Rd 26 F T,3,Rd F T,4,Rd F T,4,Rd

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Resistance of modes 2 and 3: EN 1993-1-8 Table 6.2 Failure mode Mode 2 Mode 3 F T,1,Rd Failure of anchor bolts F T,2,Rd F t,rd,anchor m e F t,rd,anchor F T,3,Rd F t,rd,anchor Q Q Resistance of the T-stub F T,2,Rd 2Mpl,2,Rd 2nF m n t,rd,anchor F T,3,Rd 2F t,rd,anchor F T,3,Rd Where: F t,rd,anchor M m l ; l = l ; n=min e; 1,25m pl,2,rd pl,rd eff,2 eff,2 eff,nc Resistance of one anchor bolt F T,4,Rd 27

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Tensile resistance of anchor bolts : EN 1993-1-8 6.2.6.12 1. Base plate 2. Grout 3. Concrete foundation (a) Hook : bond resistance (b) Washer plate : No bond 28

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Resistance of one anchor bolt, two failure modes: Tensile resistance of the anchor bolt section, Ft,Rd, Bond anchorage resistance, Ft,bond,Rd. Ft,Rd,anchor min F t,rd; Ft,bond,Rd Design tensile resistance of the anchor bolt section : Where: f ub g M2 = 1,25 F t,rd Tensile strength of the anchor bolt 0,9 f A g ub M2 s EN 1993-1-8 Table 3.4 EN 1993-1-8 Table 3.1 29

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Bond anchorage resistance of a straight bolt : Where: d Nominal diameter of an anchor bolt f bd Design bond strength : If d < 32 mm : If d 32 mm : g c = 1,5 f bd bd F fyb 600 N/mm f t,bond,rd dl f 0,36 fck g C 0,36 fck 132 d g 100 2 C fyb : Yield strength of the anchor bolt. 30 b bd lb Ft,Bond,Rd

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Bond resistance of a bolt with a hook : F t,bond,rd dlb f 0,7 bd EN 1993-1-8 6.2.6.12 (5) Ft,Bond,Rd Check that : fyb 300 N/mm 2 l b 5d 90 31

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Resistance of mode 4: Failure mode Mode 4 F T,3,Rd F T,4,Rd Yielding of the column web in tension t wc Where: Resistance of the T-stub T,4,Rd t,wc,rd f y,wc Yield strength of the column web beff,t= leff,1 32 F F b t f eff,t wc y,wc g M0

PINNED COLUMN BASE JOINT - RESISTANCE IN TENSION Weld resistance : Where: a w b w f u l w,wb u Ft,w,Rd lw,eff,taw bg w M2 weld throat thickness of the web correlation factor nominal ultimate strength of the weaker joined part total effective length of the web welds l =2l l w,eff,t eff,1 w,wb Final resistance of the joint in tension : f / 3 N min F ; F N T,Rd T,Rd t,w,rd t,ed EN 1993-1-8 Table 4.1 33

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Three ways to transmit shear force to concrete block : Friction resistance between base plate and concrete (compression), Shear of anchor bolts (compression/tension), Use of shear nibs (important tension force). 34

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Design friction resistance : Ff,Rd Cf,dNc,Ed EN 1993-1-8 6.2.2 (6) Where: N c,ed C f,d Compression force Coefficient of friction For sand-cement mortar : Cf,d 0,2 Axial force N c,ed Shear force V Ed <0,2 N c,ed Friction 35 h p e h

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Shear resistance of an anchor bolt: Where: f yb vb,rd bc ub s M2 Yield strength of the anchor bolt F a g f A EN 1993-1-8 6.2.2 (7) a 0,44 0,0003 f and 235 N/mm f 640 N/mm 2 2 bc yb yb Fvb,Rd 36

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Shear resistance in presence of compression : Addition of friction resistance and shear resistance of anchor bolts : Where: n Number of anchor bolts Fv,Rd Ff,Rd nfvb,rd VEd Axial force N c,ed EN 1993-1-8 6.2.2 (8) Shear force V Ed Friction Shear of anchor bolts 37 e h

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Shear resistance in presence of tension : Where: F T,Rd V nf Ed vb,rd N 1,4F t,ed T,Rd 1 Tensile resistance of the T-stub in tension Axial force N t,ed Shear force V Ed Shear of anchor bolts 38 e h

PINNED COLUMN BASE JOINT - SHEAR RESISTANCE Shear resistance of welds (in compression) : Where: l w,eff a f vw,d fu / 3 bg w M2 Vw,Rd fvw,d alw,eff VEd total effective length of the welds in the direction of shear weld throat thickness in the direction of shear Check of the shear resistance of welds (in tension) : 2 2 N V t,ed Ed Fw,Ed fvw,d a l w,eff,t l w,eff 39

FIXED COLUMN BASE JOINT

FIXED COLUMN BASE JOINT- INTRODUCTION Calculation of the bending resistance and initial rotational stiffness in presence of axial force : M j,ed M j,rd N j,ed M j,ed M j,rd j,ed S j,ini j,ed Initial rotational stiffness : S j,ini M j,ed j,ed 41

FIXED COLUMN BASE JOINT- INTRODUCTION Application of the component method : N j,ed M j,ed M j,rd j,ed F T F c F T Mode 2 Mécanisme partiel et rupture des tiges T-stub in tension : T-stub in compression : F T,2,Rd =(2M pl, 2, Rd +nf t, Rd )/(m +n) F C Tronçon en T comprimé Aire de répartition m uniforme de pression entre la platine et son appui 42 e l eff b eff

FIXED COLUMN BASE JOINT- INTRODUCTION Lever arms : Tensile force positioned at the centre of anchor bolts, Compression force at the centre of the column flange. Bending moment : M z F z F j,ed C C T T Bending resistance : resistance reach on a T-stub. h c M j,ed t fc F F or F F C C,Rd T T,Rd z T z C F T F C 43

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Bending resistance depend on eccentricity : e Dominant tensile force : Dominant compression force : 0 e z N T N M N z e j,ed j,ed C N 0 M N j,rd j,rd N j,rd N j,rd M j,rd M j,rd F T,Rd z T z T F T F C z C z C F C,Rd 2 T-stubs in tension 44 2 T-stubs in compression

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Dominant bending moment : en zt or en zc Joint composed of a tensile part and a compressive part : Resistance reaches in one these parts, N j,rd N j,rd M j,rd M j,rd z T z C z T z C F T,Rd F C F T F C,Rd T-stub in tension critical 45 T-stub in compression critical

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Resistance in compression of a flange T-stub : Where: l min b ; b 2c eff p fc F f b l C,Rd jd eff eff h hp h c c beff min c, tfc tfc min c, 2 2 c t p 3f f jd yp g M0 l eff c c EN 1993-1-8 (6.4) F C,Rd b eff t fc c l eff t wc b fc b p b eff c h c h p 46

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Resistance of the tensile part of the joint (2 anchor bolts): Analysis of the resistance of an equivalent T-stub : F T,Rd EN 1993-1-8 Figure 6.10 Same calculation as for pinned column base joint: Different effective length, leff Replace m by mx, e by ex in resistance of T-stub 47

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Effective lengths of the T-stub : Circular mechanism Non circular mechanism 2 m 4m x x 1,25ex leff,cp min mx w 2mx 0,625 ex w /2 l eff,nc min mx 2e 2 mx 0,625 ex e bp /2 EN 1993-1-8 Table 6.6 e w e x b p m x 48

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Loading Lever arm z Bending resistance M j,rd for a given value of e N Dominant compression force Dominant tension force z = z C + z C z = z T + z T N j,ed < 0 and 0 e N +z C N j,ed < 0 and-z C e N 0 The smaller of and N j,ed > 0 and 0 e N +z T N j,ed > 0 and -z T e N 0 The smaller of z F C C,Rd / e 1 N z F C,Rd / e 1 FT,Rdz FT,Rdz and z / e 1 z / e 1 T N z T C N N z N j,ed 0 N j,ed 0 Dominant bending moment z = z T + z C M j,ed > 0 is clockwise, N j,ed > 0 is tension. and e N > +z T or e N < - z T e N The smaller of M N j,ed j,ed 49 M N j,rd j,rd and e N < - z C or e N > z C FC,Rdz FT,Rdz and z / e 1 z / e 1 T N C N Table 6.7

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS The column base joint can be classified rigid : for frames where the bracing system reduces the horizontal displacement by at least 80% : EN 1993-1-8 (2) 5.2.2.5 - if 0,5 - if 0,5 3,93 and S 72 2 1 EI / L Otherwise : Where : 0 0 j,ini 0 c c - if 3,93 and S 48 EI / L 0 j,ini c c S j,ini 30EI Lc : storey height of the column, Ic : second moment of area of the column, L c c : slenderness of the column in which both ends are assumed to be pinned. 0 50

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Otherwise the column base joint is semi-rigid : Joint model by a rotational stiffener in the global analysis : Rotational stiffener S j S S if M 2 M /3 j j,ini j,ed j,rd Sj,ini S if 2 M /3 M M j j,rd j,ed j,rd S j (1,5 M / M ) ; 2,7 j,ed j,rd 51

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Model for the calculation of the initial rotational stiffness : Tensile and compressive parts modelled by axial stiffener. Initial rotational stiffness : S j,ini M j,ed j,ed N j,ed M j,ed N j,ed M j,ed F T j,ed j,ed F C 52 k T z T z C k C

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Stiffness of compressive part of the joint Where: l eff b eff C 13 Effective length of the T-stub, Effective width of the T-stub, E c Elastic modulus of concrete (see EN 1992-1-1), E Elastic modulus of steel. k E l b k 1,275E c eff eff EN 1993-1-8 Table 6.11 F C Flange c Concrete 53 Contact between flange and concrete

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Stiffness of the tensile part of the joint EN 1993-1-8 Table 6.11 Depends on the presence or absence of prying effect. Presence of prying effect : L b L * b Absence of prying effect : L b > L * b F T F T B B B B T T Q Q 54

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Stiffness of the tensile part in presence of prying effect : k T 1 1 1 k k 15 16 EN 1993-1-8 Table 6.11 k16 : stiffness coefficient of anchor bolts in tension : k 16 1,6 A L s b k15 : stiffness coefficient of base plate in bending under tension : k 3 0,85 lefftp 15 3 m 55

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Stiffness of the tensile part in absence of prying effect : k T 1 1 1 k k 15 16 EN 1993-1-8 Table 6.11 k16 : stiffness coefficient of anchor bolts in tension : k 16 2 A L s b k15 : stiffness coefficient of base plate in bending under tension : k 3 0,425 lefftp 15 3 m 56

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Rotational stiffness depend on the eccentricity : Dominant tensile force : Dominant compression force : 0 e z N T e z e N C N 0 M N j,ed j,ed N j,ed M j,ed N j,ed M j,ed F T,1 j,ed F T,2 F C,1 F C,2 j,ed k T z T z T k T k C z C z C k C 2 T-stubs in tension 57 2 T-stubs in compression

FIXED COLUMN BASE JOINT- BENDING RESISTANCE Dominant bending moment : en zt or en zc Joint composed of a tensile and compressive part : F T N j,ed M j,ed j,ed F C k T z T z C k C 58

FIXED COLUMN BASE JOINT- INITIAL ROTATIONAL STIFFNESS Loading Lever arm z Initial rotational stiffness S j,ini for a given value of e N Dominant compression force Dominant tension force z = z C + z C z = z T + z T N j,ed < 0 and 0 e N +z C N j,ed < 0 and-z C e N 0 S j,ini 2 E z k 2 N j,ed > 0 and 0 e N +z T N j,ed > 0 and -z T e N 0 S j,ini 2 E z k 2 C T N j,ed 0 N j,ed 0 Dominant bending moment z = z T + z C M j,ed > 0 is clockwise, N j,ed > 0 is tension. and e N > +z T or e N < - z T e N S j,ini M N E z 1 ek 1 1 1ak kc kt ak j,ed j,ed 59 2 and e N < - z C or e N > z C z k -z k = k + k e = e C C T T k N T C Table 6.12

APPLICATION

APPLICATION PRESENTATION OF THE EXAMPLE Detail of the joint and the concrete block Axial force : N Ed Column : IPE 450 in S235 Base plate 48022010 in S235 Shear force V z,ed Grout of 30 mm thickness Concrete class C25/30 d f =500mm l b =400mm Axis x-x Anchor bolts M24 class 4.6 e h Axis y-y e b 400 b p =220 Axis z-z h p =480 800 61

APPLICATION PRESENTATION OF THE EXAMPLE Detail of the joint 15 10 14,7 2 anchor bolts M24 Class 4.6 225 190 9,4 225 15 40 140 40 Flange weld : 6 mm e m 60,8 40 Web weld : 4 mm 62

APPLICATION PRESENTATION OF THE EXAMPLE Load Case 1 (compression) : N c,ed = 85 kn V z,ed = 35 kn 1-1 Check the resistance in compression 1-2 Check the shear resistance Load Case 2 (tension) : N T,Ed = 8,86 kn V z,ed = 17,5 kn 2-1 Check the resistance in tension 2-2 Check the shear resistance 63

APPLICATION 1-1 RESISTANCE IN COMPRESSION Concrete (C25/30) design strength : fck f cd acc g c 25 fcd 1 16,7 MPa 1,5 The value of b j is equal to 2/3, as : Coefficient a bf : e m 50 mm 30 mm min0,2 bp 0,2 hp a a bf bf d e e f h b = min 1+ ; 1+2 ; 1+2 ; 3 max( hp, bp ) h p b p 500 800 480 400 220 min 1 ; 1 ; 1, 3 1,67 480 480 220 64

APPLICATION 1-1 RESISTANCE IN COMPRESSION Foundation bearing strength : f a b jd bf j cd fjd 1,672/316,7 18,6 MPa Additional bearing width of the flange : c t p 3 f f jd yp g f M0 235 c 10 20,5 mm 318,61,0 65

APPLICATION 1-1 RESISTANCE IN COMPRESSION Geometrical parameter : cp p c h min h ; h 2c min 480;450 220,5 480 mm cp p fc b min b ; b 2c min 220;190 220,5 220 mm cp c fc Short projection l h 2t 2c 450 214,7 220,5 379,6 mm 0 Resistance in compression of the column base joint : N f h b l b t c C,Rd jd cp cp cp cp wc 2 18,6 480220 379,6 220 9,4 220,5 /1000 766,6 kn 66

APPLICATION 1-1 RESISTANCE IN COMPRESSION Check of the resistance in compression: N C,Rd 766,6 kn N 85 kn c,ed h c = 450 bc =15 20,5 bc =15 b fc =190 t fc = 14,7 c c t wc = 9,4 l eff = 220 c c= 20,5 h p = 480 c b eff 67

APPLICATION 1-2 SHEAR RESISTANCE (CASE 1) Friction resistance : F C N f,rd f,d c,ed Ff,Rd 0,285 17 kn Shear resistance of one anchor bolt : F F vb,rd a bc ub s Shear resistance of the joint F F nf g f M2 A (0,44 0,0003240) 400353 41,6 kn 1,2510 vb,rd 3 v,rd f,rd vb,rd Fv,Rd 17 241,6 100,2 kn 68

APPLICATION 1-2 SHEAR RESISTANCE (CASE 1) Shear resistance of welds : u Vw,Rd a lw,eff bg w M2 l V w,eff w,rd f / 3 2 450 214,7 221 757,2 mm 360 / 3 4757,2/1000 629,5 kn 0,81,25 Check of the shear resistance : z,rd v,rd w,rd z,ed V min F ; V 100,2 kn V =35kN 69

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Length m : m p/2 t /2 0,8 2a wc (140-9,4) m = -0,8 2 4 = 60,8 mm 2 Effective lengths and mechanisms : l l eff,cp eff,cp eff,nc eff,nc =2 m =2 (60,8)=381,9 mm l =4 m+1,25e l =4 60,8+1,25 40=293,1 mm Effective lengths of mode 1 and 2 : l min l ; l 293,1 mm l eff,1 eff,cp eff,nc eff,2 l eff,nc 293,1 mm w 40 140 40 e m 60,8 40 Web weld : 4 mm 70

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Presence of prying effect? Limit anchor bolt elongation length : Anchor bolt elongation length : L 8d e t t 0,5 k L b m p wa b 8,8m A 3 * s b 3 leff,1tp L 3 * 8,860,8 353 b 3 2382 mm L 293,110 824 30 10 5 0,522 248 mm L 2382 mm Prying effect develops and failure modes 1, 2, 3 and 4 will be considered. * b 71

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Bending resistance of the base plate (per unit length) : m m pl,rd 2 p t f 4 g yp M0 pl,rd 3 2 10 235 41,010 5,87kN.mm/mm Bending resistances of the base plate Mode 1 : Mode 2 : Mpl,1,Rd leff,1 mpl,rd 293,1 5,87 1722 kn.mm Mpl,2,Rd leff,2 mpl,rd 293,1 5,87 1722 kn.mm 72

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Resistance of one anchor bolt in tension Design tensile resistance of the anchor bolt section: 0,9 fub As Ft,Rd g Design bond strength : F M2 0,9353400 101,6 kn 1,2510 t,rd 3 f f bd bd 0,36 g C f ck 0,36 25 1,5 1,2 MPa 73

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) F t,bond,rd Design bond anchorage resistance: dl f b bd Ft,bond,Rd 24 400 1,2/1000 36,2 kn Ft,Bond,Rd Design anchor bolt resistance : Ft,Rd,anchor min F t,rd ; Ft,bond,Rd 36,2 kn lb = 400 mm 74

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Resistance in tension of the T-stub : modes 1 and 2 Failure mode Mode 1 Mode 2 F T,1,Rd F T,1,Rd = 113,3 kn F T,2,Rd =62,9kN F T,2,Rd Form of the mode m F t,rd,anchor m e Q Q Q Q Resistance of the T-stub F F T,1,Rd T,1,Rd 4M pl,1,rd m 41722 113,3 kn 60,8 F F T,2,Rd T,2,Rd 2M 2nF pl,2,rd t,rd,anchor m n 21722 40236,2 62,9 kn 60,8 40 n = min ( e ; 1,25 m) = min (40 ; 1,25 60,8) = 40 mm F T,3,Rd F T,3,Rd F T,4,Rd F T,4,Rd 75

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Resistance in tension of the T-stub : modes 3 and 4 Failure mode Mode 3 Mode 4 F T,3,Rd F T,3,Rd =72,4 kn F T,4,Rd = 647,5 kn F T,4,Rd Form of the mode F t,rd,anchor F t,rd,anchor t wc Resistance of the T-stub F F T,3,Rd T,3,Rd 2F t,rd,anchor 236,2 72,4 kn F F T,4,Rd b t f eff,t wc g M0 y,wc 293,19,4 235 647,5 kn 110 T,4,Rd 3 b eff,t = l = 293,1 mm eff,1 76

APPLICATION 2-1 RESISTANCE IN TENSION (CASE 2) Resistance of the equivalent T-stub in tension: Weld resistance : F min F ; F ; F ; F 62,9 kn T,Rd T,1,Rd T,2,Rd T,3,Rd T,4,Rd F l a F t,w,rd w,eff,t w t,w,rd Check of the resistance of the joint in tension : fu / 3 bg 360/ 3 293,1 2 4 487 kn 0,81,251000 T,Rd T,Rd t,w,rd t,ed w N min F ; F 62,9 kn N 17 kn M2 77

APPLICATION 2-2 SHEAR RESISTANCE (CASE 2) Check of the shear resistance of bolts : V nf Ed vb,rd Nt,Ed 17,5 8,86 0,31 1 1,4 N 241,6 1,4 62,9 T,Rd Check of the shear resistance of weld : 2 2 N t,ed VEd f vw,d a 1? lw,eff,t lw,eff 2 2 8,86 17,5 360 / 3 4 0,033 1 2293,1 757,2 0,81,25 78

CONCLUSION

CONCLUSION Design methods, based on EC3 and EC2, are presented to check the resistance of pinned column base joint for different internal forces (compression/tension/shear). The bending resistance and initial rotation stiffness of rigid column base joint are determined considering T-stubs in tension and compression. These methods are based on the component method of EN 1993-1-8. The different components are: anchor bolts in tension and/or shear, bending of base plate, base plate in compression with concrete, welds. 80

REFERENCES

REFERENCES EN 1992-1-1 Eurocode 2 Design of concrete structures Part 1-1: General rules and rules for buildings EN 1993-1-1 Eurocode 3 Design of steel structures Part 1-1: General rules and rules for buildings EN 1993-1-8 Eurocode 3 Design of steel structures Part 1-8: Design of joints. 82