Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes. Institut für Theoretische Physik Universität Regensburg

Similar documents
RESONANCE at LARGE MOMENTUM TRANSFERS

Distribution Amplitudes of the Nucleon and its resonances

Meson wave functions from the lattice. Wolfram Schroers

HADRON WAVE FUNCTIONS FROM LATTICE QCD QCD. Vladimir M. Braun. Institut für Theoretische Physik Universität Regensburg

Renormalization of three-quark operators for baryon distribution amplitudes

Nucleon structure from lattice QCD

The electric dipole moment of the nucleon from lattice QCD with imaginary vacuum angle theta

Pion Distribution Amplitude from Euclidean Correlation functions

hadronic structure of the nucleon

Toward Baryon Distributions Amplitudes

Nucleon excited states on the lattice

gluonic structure of the nucleon

arxiv:hep-lat/ v1 9 Oct 2006

Proton decay matrix elements from chirally symmetric lattice QCD

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

arxiv: v1 [hep-lat] 19 Jan 2016

Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

Valence quark contributions for the γn P 11 (1440) transition

Nucleon Deformation from Lattice QCD Antonios Tsapalis

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

Confined chirally symmetric dense matter

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

light-cone (LC) variables

arxiv: v1 [hep-lat] 7 Oct 2007

The heavy-light sector of N f = twisted mass lattice QCD

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

The Lambda parameter and strange quark mass in two-flavor QCD

Bayesian Fitting in Effective Field Theory

Distribution amplitudes of Σ and Λ and their electromagnetic form factors

Non-perturbative renormalization of

B Kl + l at Low Hadronic Recoil

Spin Structure of the Nucleon: quark spin dependence

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Covariant quark-diquark model for the N N electromagnetic transitions

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

Moments of generalized parton distribution functions viewed from chiral effective field theory.

Transverse momentum distributions inside the nucleon from lattice QCD

Angular Analysis of the Decay

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

Phases and facets of 2-colour matter

QCD. Nucleon structure from Lattice QCD at nearly physical quark masses. Gunnar Bali for RQCD

Lecture 9 Valence Quark Model of Hadrons

Higgs-charm Couplings

Applications of QCD Sum Rules to Heavy Quark Physics

Charm CP Violation and the electric dipole moment of the neutron

QCD β Function. ǫ C. multiplet

Theory toolbox. Chapter Chiral effective field theories

Lattice QCD+QED. Towards a Quantitative Understanding of the Stability of Matter. G. Schierholz. Deutsches Elektronen-Synchrotron DESY

Wave functions of the Nucleon

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Omega baryon electromagnetic form factors from lattice QCD

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Quark tensor and axial charges within the Schwinger-Dyson formalism

(Bessel-)weighted asymmetries

Nucleon structure near the physical pion mass

QCD in an external magnetic field

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

Electroweak Theory: 2

A study of π and ρ mesons with a nonperturbative

Lattice QCD+QED: Towards a Quantitative Understanding of the Stability of Matter

Quark Orbital Angular Momentum in the Model

arxiv:hep-ph/ v1 12 Oct 1994

Deep inelastic scattering and the OPE in lattice QCD

Hadron Structure. James Zanotti The University of Adelaide. Lattice Summer School, August 6-24, 2012, INT, Seattle, USA

Evaluation of Triangle Diagrams

Introduction to Quantum Chromodynamics (QCD)

Lattice Quantum Chromo Dynamics and the Art of Smearing

Mass Components of Mesons from Lattice QCD

Higher moments of PDFs in lattice QCD. William Detmold The College of William and Mary & Thomas Jefferson National Accelerator Facility

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18

Spin Densities and Chiral Odd Generalized Parton Distributions

Particle Physics I Lecture Exam Question Sheet

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

arxiv:hep-lat/ v1 1 Apr 2003

QCD Phases with Functional Methods

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Nucleons from 5D Skyrmions

Particle Physics WS 2012/13 ( )

Hadron structure from lattice QCD

Nuclear forces and their impact on structure, reactions and astrophysics

arxiv: v1 [hep-ex] 31 Dec 2014

χ cj Decays into B B in Quark-Pair Creation Model

Fluid dynamic propagation of initial baryon number perturbations

Hyperons and charmed baryons axial charges from lattice QCD. Christos Kallidonis

SSA and polarized collisions

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Imaging Hadrons using Lattice QCD

Nucleon Valence Quark Structure

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

QCD Vacuum, Centre Vortices and Flux Tubes

Structure of Generalized Parton Distributions

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

Hadron structure with Wilson fermions on the Wilson cluster. Stefano Capitani

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Transcription:

Moments of leading and next-to-leading twist Nucleon Distribution Amplitudes Nikolaus Warkentin for QCDSF Institut für Theoretische Physik Universität Regensburg

Theoretical framework for hard exclusive processes QCD factorization e.g. magnetic form factor of the proton can be written as: G M (Q 2 ) = 1 [dx] 1 [dy]φ (y i, Q y )T H (x i, y i, Q)Φ(x i, Q x ) [ 1 + O(m 2 /Q 2 ) ] 0 0 [dx] = dx 1 dx 2 dx 3 δ(1 i x i ) and Q x min i (x i Q) x i, y i are longitudinal momentum fractions carried by the i-th quark. Φ as (x i ) = 120x 1 x 2 x 3 Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 2 / 14

Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 3 / 14

Starting Point In the light-cone gauge with lightlike z 1, z 2, z 3 -separation (z 1 z 2 ) 2 (z 2 z 3 ) 2 (z 3 z 1 ) 2 1/µ 2 0 uα(z a 1 )uβ(z b 2 )dγ(z c 3 ) P ɛ abc = 1 4 f [ N ( /pc) αβ (γ 5 N) γ V (z i p) + (/pγ 5 C) αβ N γ A(z i p) +(iσ µν p ν C) αβ (γ µ γ 5 N) γ T (z i p)] φ(x 1, x 2, x 3 ) :=V (x 1, x 2, x 3 ) A(x 1, x 2, x 3 ) + 2T (x 1, x 3, x 2 ) P = [dx] 12 6 (2φ(x 1, x 2, x 3 ) φ(x 3, x 2, x 1 )) u (x 1 ) ( u (x 2 )d (x 3 ) d (x 2 )u (x 3 ) ) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 4 / 14

The Wish List ) l u(0)] a Cγ λ [(id µ j ) n γ 5d τ (0)] c P = f N V lmn (p ρ i ) l u(0)] a Cγ λ γ 5[(iD µ j ) n d τ (0)] c P = f N A lmn (p ρ i ) l u(0)] a Cγ λ ( iσ µν)[(id µ j ) n γ µ γ 5d τ (0)] c P = 2f N T lmn (p ρ i ) l u(0)] a Cγ µ [(id µ j ) n γ 5γ µd τ (0)] c P = λ 1f lmn 1 (p ρ i ) n m N N τ ) l u(0)] a Cσ µν [(id µ j ) n γ 5σ µνd τ (0)] c P = λ 2f lmn 2 (p ρ i ) n m N N τ Symmetries Knowledge of φ lmn sufficient Momentum Conservation φ lmn = φ (l+1)mn + φ l(m+1)n + φ lm(n+1) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 5 / 14

The Wish List ) l u(0)] a Cγ λ [(id µ j ) n γ 5d τ (0)] c P = f N V lmn (p ρ i ) l u(0)] a Cγ λ γ 5[(iD µ j ) n d τ (0)] c P = f N A lmn (p ρ i ) l u(0)] a Cγ λ ( iσ µν)[(id µ j ) n γ µ γ 5d τ (0)] c P = 2f N T lmn (p ρ i ) l u(0)] a Cγ µ [(id µ j ) n γ 5γ µd τ (0)] c P = λ 1f lmn 1 (p ρ i ) n m N N τ ) l u(0)] a Cσ µν [(id µ j ) n γ 5σ µνd τ (0)] c P = λ 2f lmn 2 (p ρ i ) n m N N τ Symmetries Knowledge of φ lmn sufficient Momentum Conservation φ lmn = φ (l+1)mn + φ l(m+1)n + φ lm(n+1) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 5 / 14

The Wish List ) l u(0)] a Cγ λ [(id µ j ) n γ 5d τ (0)] c P = f N V lmn (p ρ i ) l u(0)] a Cγ λ γ 5[(iD µ j ) n d τ (0)] c P = f N A lmn (p ρ i ) l u(0)] a Cγ λ ( iσ µν)[(id µ j ) n γ µ γ 5d τ (0)] c P = 2f N T lmn (p ρ i ) l u(0)] a Cγ µ [(id µ j ) n γ 5γ µd τ (0)] c P = λ 1f lmn 1 (p ρ i ) n m N N τ ) l u(0)] a Cσ µν [(id µ j ) n γ 5σ µνd τ (0)] c P = λ 2f lmn 2 (p ρ i ) n m N N τ Symmetries Knowledge of φ lmn sufficient Momentum Conservation φ lmn = φ (l+1)mn + φ l(m+1)n + φ lm(n+1) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 5 / 14

Leading Twist Projection Weyl representation: γ 5 = +1 spinor: χ α (χ ) α γ 5 = 1 spinor: χ α (χ ) α σ µ matrices: (σ µ ) α α ( σ µ ) α α Converts vector-like objects to spinor-like objects Different classes of 3-quark operators: Quarks with same (ɛ abc q a αq b β qc γ) and different (ɛ abc q a α q b β qc γ) chirality Leading Twist projection (for nucleon) 1 : O α βγ = ɛ abc q a α q b {β qc γ} Easy to generalize to composite operators with derivatives 1 M.E.Peskin (1979) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 6 / 14

Complete set of operators for Leading Twist Use only operators from one "good" irreducible representation See next talk by Thomas Kaltenbrunner 0 Derivatives (τ 12 1 ) 0 O 12 0 p = f N(p 1 γ 1 p 2 γ 2 )N(p) Bad choice 0 O 34 0 p = f N(p 3 γ 3 p 4 γ 4 )N(p) 0 O 1234 0 p = f N (p 1 γ 1 + p 2 γ 2 p 3 γ 3 p 4 γ 4 )N(p) Notation N(p) Nucleon spinor f N Wave function normalisation φ lmn NDA moment 1 Derivative (τ 12 2 ), l + m + n = 1 p 1 0 0 O 12 1 p = f Nφ lmn [(γ 1 p 1 γ 2 p 2 )(γ 3 p 3 + γ 4 p 4 ) 2p 1 p 2 γ 1 γ 2 ] N(p) 0 O 34 1 p = f Nφ lmn [(γ 1 p 1 + γ 2 p 2 )(γ 3 p 3 γ 4 p 4 ) 2p 3 p 4 γ 3 γ 4 ] N(p) 0 O 1234 1 p = f N φ lmn (γ 1 p 1 γ 2 p 2 )(γ 3 p 3 γ 4 p 4 )N(p) 2 Derivatives (τ 4 2 ), l + m + n = 2 p 2 p 3 0 0 O 1234 2 p = f N φ lmn [p 1 p 2 γ 1 γ 2 (p 3 γ 3 p 4 γ 4 ) + p 3 p 4 γ 3 γ 4 (p 1 γ 1 p 2 γ 2 )] N(p) Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 7 / 14

Example for the first moment Rewrite the irreducible operator as sum of DA s operators B D+ + 42 = 1 2 1 8 ( D1 u2u a 3 b d2 c id 2 u2 a u3 b d2 c D 3 u2u a 4 b d2 c id 4 u2u a 4 b d2 c ) = ( A 13 2 + ia 14 2 + i A 23 2 A 24 2 + A 31 2 + i A 32 2 + i A 41 2 A 42 iv2 14 i V2 23 + V2 24 V2 31 i V2 32 iv2 41 + V2 42 Use different copies of the representation for isospin 1/2 operators Calculate the matrix element 4 0 B D+ + 42 B D++ 66 p = N 2 (p 1 + ip 2 ) (p 3 + ip 4 ) f N φ lmn ) 2 V 13 2 Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 8 / 14

Lattice Setup valence & sea quark Clover-Wilson action plaquette gluon action QCDSF/UKQCD configurations Used configurations β κ (m π[gev ]) volume a[fm] L[fm] 5.29 0.1340 (1.411), 0.1350 (1.029), 0.1359 (0.587) 16 3 32 0.08 1.28 5.29 0.1355 (0.800), 0.1359 ( 0.587), 0.1362 (0.383) 24 3 48 0.08 1.92 5.40 13560 (0.856), 13640 ( 0.421) 24 3 48 0.07 1.68 general 3-quark operators calculated on APE-machine on 128 nodes (24 3 48) and 32 nodes (16 3 32) irreducible combinations calculated on PC and normalisation extracted from nucleon-nucleon corellator 0 T [O(t) N(0) 0 and 0 T [N(t) N(0) 0 Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 9 / 14

LTW normalization constant f N 0,03 f N f N [GeV 2 ] 0,025 0,02 0,015 f N = 0.00746 +/- 0.00079 GeV 2 β=5.29 (16 3 32) 0,01 f N = 0.005 +/- 3.39e-05 GeV 2 β=5.29 (24 3 48) 0,005 0 0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2 2 m π [GeV ] Lattice (unrenormalized) Here (Z 0.8) f N = (5 ± 0.04) 10 3 GeV 2 Lattice 1988 (renormalized) G.Martinelli, C.T.Sachrajda f N = (2.9 ± 0.6) 10 3 GeV 2 LCSR V.Braun et al. f N = (5.3 ± 0.5) 10 3 GeV 2 Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 10 / 14

LTW (100)-moment 1,2 φ 100 1,1 1 φ 100 = 1.05 +/ 0.00127 β = 5.29 (16 3 32) φ 100 = 0.873 +/ 0.026 β = 5.29 (24 3 48) 0,9 0,8 0,7 0,6 0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 m π 2 [GeV 2 ] Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 11 / 14

LTW (020)-moment φ 002 0,5 φ 002 = 0.31 +/ 0.0299 β=5.29 (16 3 32) φ 002 = 0.365 +/ 0.0296 β=5.29 (24 3 48) 0,4 0,3 0,2 0,1 0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 m π 2 [GeV 2 ] Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 12 / 14

NLTW constants [GeV 2 ] 0,14 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,06 Next-leading-twist constants λ 1 = 0.0443 +/- 0.000422 GeV 2 λ 1 (β=5.29, 16 3 x 32) λ 1 = 0.033 +/- 0.00218 GeV 2 λ 1 (β=5.29, 24 3 x 48) λ 2 = 0.0942 +/- 7.2e-05 GeV 2 λ 2 (β=5.29, 16 3 x 32) λ 2 = 0.0678 +/- 0.0044 GeV 2 λ 2 (β=5.29, 24 3 x 48) 0,05 0,04 0,03 0,02 0,01 0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2 2 m π [GeV ] Lattice (unrenormalized) Here λ 1 = ( 33 ± 2) 10 3 GeV 2 λ 2 = (68 ± 4) 10 3 GeV 2 LCSR V.Braun et. al. λ 1 = ( 27 ± 5) 10 3 GeV 2 λ 2 = (54 ± 19) 10 3 GeV 2 Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 13 / 14

Done To do General 3-quark local operator calculated. Using the irreducible operators for the 3-quark distribution amplitude operators DA s moments are calculated. f N 5 10 3 GeV 2 (not renormalized value) is in good agreement with LCSR. λ 1, λ 2 have different signs. Statistics improved by using different momentum combinations for nucleon corellator (too expensive for the DA s ;-( ). Increase statistics (important for higher moments). Extend calculation to the parity partner of the nucleon. Extend to higher moments of higher twists. Nikolaus Warkentin (Regensburg) NDA moments 2nd August 2007 14 / 14