Photonics Beyond Diffraction Limit:

Similar documents
Photonic Micro and Nanoresonators

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Quantum Information Processing with Electrons?

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Defect-based Photonic Crystal Cavity for Silicon Laser

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

PLASMONICS/METAMATERIALS

Nanomaterials and their Optical Applications

Surface plasmon waveguides

A Dielectric Invisibility Carpet

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Sub-wavelength electromagnetic structures

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

Optical microcavities and nanocavities having both highquality

From Metamaterials to Metadevices

Left-handed materials: Transfer matrix method studies

Nanomaterials and their Optical Applications

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Negative epsilon medium based optical fiber for transmission around UV and visible region

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC

Electromagnetic Metamaterials

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Air-holes radius change effects and structure transitions in the linear photonic crystal nanocavities

SUPPLEMENTARY INFORMATION

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

Photonic devices for quantum information processing:

From optical graphene to topological insulator

Optical nonlocality induced Zitterbewegung near the Dirac point in metal-dielectric multilayer metamaterials

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method

Monolayer Semiconductors

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

Lei Zhou Physics Department, Fudan University, Shanghai , China

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance

Computational Electromagnetics: from Metamaterials to Particle Accelerators

Superconductivity Induced Transparency

Radiation-matter interaction.

Highly Efficient Graphene-Based Optical Modulator With Edge Plasmonic Effect

Symmetry Breaking and Optical Negative Index of Closed Nanorings

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

ECE 484 Semiconductor Lasers

Quantum optics and optomechanics

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Workshop on New Materials for Renewable Energy

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Introduction to Photonic Crystals

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Seminars in Nanosystems - I

Introduction to Nonlinear Optics

Nanophysics: Main trends

Nonlinear Electrodynamics and Optics of Graphene

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Beyond Stefan-Boltzmann Law: Thermal Hyper- Conductivity

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Towards optical left-handed metamaterials

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

transmission reflection absorption

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Dr. Tao Li

Strong coupling between mid-infrared localized plasmons and phonons

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle

Supporting Information

Zeroth-order transmission resonance in hyperbolic metamaterials

Energy transport in metal nanoparticle plasmon waveguides

Plasmonic nanoguides and circuits

EPSILON-NEAR-ZERO (ENZ) AND MU-NEAR-ZERO (MNZ) MATERIALS

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity

arxiv: v1 [physics.optics] 1 May 2011

Acoustic metamaterials in nanoscale

Micro- and Nano-Technology... for Optics

Lecture 0. NC State University

Strong Absorption in a 2D Materials-based Spiral Nanocavity

Quantum Optics in Wavelength Scale Structures

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities

Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

Photonic crystal laser threshold analysis using 3D FDTD with a material gain model

Light Manipulation by Metamaterials

Tuning the far-field superlens: from UV to visible

Demonstration of Near-Infrared Negative-Index Materials

Spring 2009 EE 710: Nanoscience and Engineering

1. Reminder: E-Dynamics in homogenous media and at interfaces

Refractive Index Measurement by Gain- or Loss-Induced Resonance

Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC

Rezonanse typu spin-orbit w meta-materiałowych elementach nanofotoniki Spin-orbit resonances in meta-material elements of nanophotonics

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

Gradient-index metamaterials and spoof surface plasmonic waveguide

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

PANDA ring resonator for optical Gas and Pressure sensing applications

Directional emitter and beam splitter based on self-collimation effect

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

SUPPLEMENTARY INFORMATION

Transcription:

Photonics Beyond Diffraction Limit: Plasmon Cavity, Waveguide and Lasers Xiang Zhang University of California, Berkeley

Light-Matter Interaction: Electrons and Photons Photons Visible / IR ~ 1 m Electrons e ~ 1 nm Quantum dot Not efficient Interaction NV center 5 nm 0.36 nm

Challenges in Scaling Down of Photonics Intel The Photonic Chip M. Paniccia Intel Corp., Silicon Photonics (2005) Key Issues: Nanoscale Waveguides On Chip Light Source Ultrafast Modulation New approaes Hybrid Plasmon Waveguide Plasmon Nano Lasers Graphene, Plasmon Modulators

Outline Indefinite Nano Cavity Deep Sub Plasmon Waveguide and Lasers

Optical Fabry-Perot Cavity m=1 m=2 m=3 mirror mirror Resonance frequency m f m 2L c n c : speed of light in vacuum L : cavity size m: mode order (1, 2, 3, ) University of California, Berkeley 5

Quality factor Q and modal volume V Cavity mode mirror mirror Quality factor Q Q 2 Electromagnetic Energy Energy Dissipated per Stored cycle Modal Volume V Q/V Figure of Merit V Total Electromagnetic Energy max( Electromagnetic Energy Density) University of California, Berkeley 6

V [(λ) 3 ] 10 3 10 2 10 1 10-2 Subwavelength confinement Optical Micro- and Nano-cavities Plasmonic Fabry-Perot (V. Sorger et al) Plasmonic microdisk (B. Min et al) Q ~ 1,400 V ~ 6 () 3 Q/V~230 () -3 Microring resonator (M. Lipson et al) Q ~ 1.510 4 V ~ 10(/n) 3 Q/V~ 1,500(/n) -3 Photonic crystal (S. Noda et al) Q ~ 2.510 6 V ~ 1.4 (/n) 3 Q/V~1.8x10 6 (/n) -3 High Q 10-4 Q ~ 200 scale bar: 2 μm 100 nm Ref.: K. Vahala, Nature 424, 839 (2003); D. K. Armani et al., Nature 421, 925 (2003); 10-6 Enhancement of light-matter interactions: - Purcell factor for spontaneous emission: Q/V - Strong coupling for cavity QED: Q/V 1/2 - (3) optical nonlinearities: Q 2 /V - Optical forces and trapping: Q/V - Bio-sensing: Q/V Indefinite metamaterial nanocavity Q ~ 20 V ~ 0.0002 () 3 Q/V~100,000 () -3 V ~ 0.04 () 3 Q/V~5000 () -3 O. Painter et al., Opt. Exp. 13, 1515 (2005); M. Lipson et al., Nature 435, 325 (2005); S. Noda et al., Nature 425, 944 (2003); B. Min et al, Nature 457, 455 (2009); V. Sorger et al, Nano Lett., 9 3489 (2009). 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Microtoroid Microsphere 25 um 50 um (K. Vahala et al) Q ~ 10 8 10 10 V ~ 2000(/n) 3 Q/V ~ 5x10 6 (/n) -3 Q University of California, Berkeley 7

V [(λ) 3 ] 10 3 10 2 10 Q/V in Optical Cavities Enhancement of light-matter interactions: - Purcell factor for spontaneous emission: Q/V - Strong coupling for cavity QED: Q/V 1/2 - (3) optical nonlinearities: Q 2 /V - Optical forces and trapping: Q/V - Bio-sensing: Q/V Larger than wavelength scale Plasmonic microdisk Microring resonator (M. Lipson et al) Q ~ 1.510 4 V ~ 10(/n) 3 Q/V~ 1,500(/n) Photonic -3 crystal cavity: Air-hole tuning & mode gap Microtoroid Microsphere 25 um 50 um (K. Vahala et al) Q ~ 10 8 10 10 V ~ 2000(/n) 3 Q/V ~ 5x10 6 (/n) -3 1 Indefinite metamaterial nanocavity Plasmonic Fabry-Perot (S. Noda et al) Q ~ 2.510 6 V ~ 1.4 (/n) 3 Q/V~1.8x10 6 (/n) -3 scale bar: 2 μm (B. Min et al) (S. Noda et al) 10-2 Q ~ 1,400 Q ~ 10 5 ; V ~ (/n) 3 V ~ 6 () 3 Q/V ~ 100,000 (/n) -3 (V. Sorger et al) Q/V~230 () -3 10-4 Q ~ 200 100 nm V ~ 0.04 () 3 Ref.: K. Vahala, Nature 424, 839 (2003); D. K. Armani et al., Nature 421, 925 (2003); Q ~ 20 Q/V~5000 Deep subwavelength () -3 O. Painter et al., Opt. Exp. 13, 1515 (2005); M. Lipson et al., Nature 435, 325 (2005); V ~ 0.0002 () 3 S. Noda et al., Nature 425, 944 (2003); B. Min et al, Nature 457, 455 (2009); 10-6 confinement -3 V. Sorger et al, Nano Lett., 9 3489 (2009). 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Q rad University of California, Berkeley 8

Metamaterials: beyond natural materials atoms Natural materials Atomic lattice constant a ~ 5.65 Å Optical wavelength λ ~1μm Homogeneous medium Crystal structure of sodium chloride (NaCl) Metamaterials meta-atoms a a λ Artificially fabricated structures Unit cell a << wavelength λ a Effective-media theory is valid Material properties not existing in natural materials University of California, Berkeley 9

Indefinite Metamaterials Dispersion relation for uniaxial anisotropic media k z k 2 x z k 2 z x 2 2 c indefinite media Normal media 0 0 0 0 0 0 anisotropic air k 0 silicon 3.5*k 0 k x Indefinite media 0 0 0 0 0 0 Access high k deep sub-λ optical confinement Ref: I. V. Lindell et al, Micro. Opt. Tech. Lett. (2001); D. R. Smith and D. Schurig, PRL 90, 077405 (2003); Z. Jacob, et al., OE (2006); A. Salandrino, et. al., PRB (2006) University of California, Berkeley 10

Indefinite Metamaterial Examples Metal nanowires array Metal-dielectric multilayers z 0 0 0 0 0 0 z 0 0 0 0 0 0 x y z x y z top side Ag/Al 2 O 3 500 nm x y Ag/Ti 3 O 5 500 nm x y Negative refraction (J. Yao et al, Science, 2008) 3D IFC Hyperlens (Liu, et., al, Science 2007) 3D IFC J. Rho et al., Nature Comm. 1, 143, (2010). University of California, Berkeley 11

Ag-Ge multilayers as indefinite metamaterial Germanium Silver z y x Effective permittivity: ( ) p v x ( ) z y p where p is filling ratio of silver layer m (1 p) m m d (1 p) p d d Effective permittivity 50 0-50 -100 z x 0 0-150 p = 0.4-200 100 150 200 250 300 Frequency (THz) University of California, Berkeley 12

Indefinite Cavity and Resonances Nanocavity made of 20 nm Ag and 30 nm Ge multilayers z y x Same mode order (1, 1, 1); same resonance frequency f 1 = 150 THz (140, 100) nm (160, 150) nm (180, 200) nm (195, 250) nm (200, 300) nm z x k E Plane wave excitation University of California, Berkeley

Size-independent Resonances in Indefinite Cavities 20 15 150 THz (140, 100) nm 10 (160, 150) nm k z /k 0 5 0-5 m f m 2L (180, 200) nm (195, 250) nm c n -10 (200, 300) nm -15 FDTD Effective media -20-15 -10-5 0 5 10 15 k x /k 0 z x (1, 1, 1) mode University of California, Berkeley 15

Fabricated Ag-Ge multilayer indefinite cavities Cavity size: (L x, L z ) nm (135, 100) nm (170,150) nm (200, 200) nm University of California, Berkeley 18

1 Anomalous Scaling in Indefinite Cavities 191 THz 15 k k m 2L i 0 i 0 (170, 150) nm (1, 1, 2) i (1, 1, 1) Transmission 0.97 0.94 0.91 (135, 100) nm 140 THz (1, 1, 2) (170, 150) nm (1, 1, 1) (1, 1, 2) 145.5 THz (200, 200) nm (1, 1, 1) 0.88 100 150 200 250 k z /k 0 10 5 0 (200, 200) nm (1, 1, 2) (135, 100 nm) (1, 1, 1) (170, 150) nm (1, 1, 1) (200, 200) nm (1, 1, 1) k 2 x k 2 z 147 THz 191 THz 0 5 10 z x 2 2 c Frequency (THz) k x /k 0 University of California, Berkeley 20

4000 4000 Q rad, v ~ k 4 Measured Radiation Q (L z = 150 nm) (1, 1, 2) (L z = 200 nm) (1, 1, 2) (L z = 100 nm) (1, 1, 1) 5% Q rad T 1 Q T tot Q rad,v 400 400 (L z = 150 nm) (1, 1, 1) (L z = 200 nm) (1, 1, 1) T 2 T 1 40 Optical Index n = 17.4! T = T 2 /T 1 40 1000 10000 100000 10 3 10 4 10 5 (k/k 0 ) 4 The cavity sizes investigated include (110 185,100) nm, (140 215,150) nm and (185 255,200) nm for the (1,1,1) mode, and (140 170,150) nm and (185 210,200) nm for the (1,1,2) mode. 22

Q rad of Indefinite Optical Cavity Cavity radiation Q: Q rad ~ neff Radiation loss from total internal reflection: ~ e ikr e ik r 0 dv k 3 Effective index: n eff k / k 0 Radiation quality factor: Q rad ~ k neff 4 ~ 4 Ref: H.A. Wheeler, Proc IRE, p.1479 (1947); Englund D et al, Opt. Exp.13, 5961 (2005). University of California, Berkeley 24

Anomalous Scaling Physics in Indefinite Cavity Cavity size can be scaled well below diffraction limit (/20) Anomalous Scaling: smaller size, higher Q rad ~ k 4 ~ (L) -4 Size-independent resonant frequency High order mode has lower resonance frequency Effective Optical Refractive Index: n =17.4 The total Q, however, is unchanged (metal loss dominated), but Q/V still increases. (Yang et al., Nature Photon. 6, 450, 2012) University of California, Berkeley 25

Outline Indefinite Nano Cavity Deep Sub Plasmon Waveguide and Lasers

Plasmonics and Its Critical Challenge Surface plasmons dilemma ω Photon ω=ck Surface Plasmon Dispersion Small Mode Size, Short Range ω sp Large Mode Size, Long Range kx Can we have the best of two worlds?

Our Approach: Hybride Plasmons Lifting the field out of metal and confined it!

Small Mode Size and Relative Long Propagation! Si / SiO 2 / Ag @ = 1550 nm Mode area ~ 2 /400 L sp ~ 50 microns Oulton, et. al., Nature Photonics (2008) Alam, et., al., CLEO (2007)

Measurement of Deep Sub Mode profile Apertureless NSOM Measured Mode Size (53x65nm) = 633 nm 125nm = 600 1450 nm (Sorger et al. Nature Comm. 2012 ) Mode Area = 1/50 th of Diffraction Limit Comparable to Transistor or Virus

Plasmon Laser Realization d = 90 nm h = 5 nm Oulton, et. al, Nature, (2009)

Spontaneous Emission to Laser oscillation 0.8 nm i ii iii i ii iii

Single mode plasmon laser @ Room Temperature 36

Multiplexed and Electrically Modulated Plasmon Laser Circuit o Directional emission o Multi colored laser array o Wavelengths multiplexing o Direct electrical modulation Ma, et. al., Nano Lett (2012)

Coherent Light Source at Single Molecule Size Single Molecular Bio Sensors Optical Modulators (Sorger, et al., Nanophotonics, 2012) 5 nm Quantum Photonics Signal Control Beam (Gate) Emitter (Chang, et al., PRB, 2010)

Possibility of Ultrafast Plasmonic Devices from Broadband Percell Effect Spontaneous emission enhancement (Purcell effect) F 3 4 2 n Q V Plasmonics offers: d = 100 nm h = Ultra-small 5 nm modal volume and low Q Broadband Purcell Factor Conventionally, dielectrical cavities (PBG, etc.) pursue High Q due to the diffraction limit High Q > low bandwidth! Ultra Fast Plasmon LED and lasers with Ideally, modulation speed up to 10 THz!

Graphene Optical Modulator Graphene contains monolayer of carbon atoms, and absorbs the incident light over a broadband (UV to mid-ir). By modulating the Fermi Level of graphene, optical absorption can be turned. Advantages of graphene modulator: Fast (1-100GHz) Broadband (1350-1600 nm) Compact (25 um 2 ) Athermal (Liu, et. al, Nature, 2011)

Photonic Spin Hall Effect in Metamaterials Strong spin orbital interaction ( kˆ kˆ or Ψ) separates light with different helicity Helicity of light: S z I( ) I( ) I( ) I( ) Yin, et., al, Science, (2013)

Valley Optoelectronics of 2D WS2 (Spin Valley LED)

Acknowledgement Former and Current Members of group: Jun Rho, Renmin Ma, Ong Pholchai, Tongcang Li, Peng Zhang Jie Yao (UC Berkeley) Maiken Mikkelsen (Duke Univ.) Volker Sorger,(George Washington Univ) Rupert Oulton (Imperial College, UK) Xiaobo Yin (Univ. Colorado) Xiaodong Yang (University of Missouri), Yongmin Liu (Northeastern) Peter Park (Samsung), Pavel Kochin (KLA) Collaborators: Prof. Lun Dai of Peking University (CdS nanowire for plasmon laser) Support from: NSF Center for Scalable and Integrated Nao Manufacturing (SINAM) DoD MURIs, DOE