EE-612: Lecture 22: CMOS Process Steps

Similar documents
Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

LECTURE 5 SUMMARY OF KEY IDEAS

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Fabrication Technology, Part I

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Make sure the exam paper has 9 pages (including cover page) + 3 pages of data for reference

Introduction to Photolithography

CVD: General considerations.

September 21, 2005, Wednesday

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering Dehradun UNIT II

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey.

ETCHING Chapter 10. Mask. Photoresist

nmos IC Design Report Module: EEE 112

EE 143 MICROFABRICATION TECHNOLOGY FALL 2014 C. Nguyen PROBLEM SET #7. Due: Friday, Oct. 24, 2014, 8:00 a.m. in the EE 143 homework box near 140 Cory

Make sure the exam paper has 7 pages (including cover page) + 3 pages of data for reference

Section 3: Etching. Jaeger Chapter 2 Reader

Changing the Dopant Concentration. Diffusion Doping Ion Implantation

IC Fabrication Technology

EE 527 MICROFABRICATION. Lecture 25 Tai-Chang Chen University of Washington

Reactive Ion Etching (RIE)

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Chapter 8 Ion Implantation

Lecture 15 Etching. Chapters 15 & 16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/76

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Lecture 0: Introduction

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE 434 Lecture 7. Process Technology

Etching: Basic Terminology

EE143 LAB. Professor N Cheung, U.C. Berkeley

Modelling for Formation of Source/Drain Region by Ion Implantation and Diffusion Process for MOSFET Device

DIFFUSION - Chapter 7

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

Properties of Error Function erf(z) And Complementary Error Function erfc(z)

Diffusion and Ion implantation Reference: Chapter 4 Jaeger or Chapter 3 Ruska N & P Dopants determine the resistivity of material Note N lower

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

EE C245 ME C218 Introduction to MEMS Design

Dopant Diffusion. (1) Predeposition dopant gas. (2) Drive-in Turn off dopant gas. dose control. Doped Si region

Lithography and Etching

Ion Implantation ECE723

CHAPTER 6: Etching. Chapter 6 1

Semiconductors Reference: Chapter 4 Jaeger or Chapter 3 Ruska Recall what determines conductor, insulator and semiconductor Plot the electron energy

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Chapter 3 Basics Semiconductor Devices and Processing

EE141- Spring 2003 Lecture 3. Last Lecture

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Clean-Room microfabrication techniques. Francesco Rizzi Italian Institute of Technology

MATHEMATICS OF DOPING PROFILES. C(x,t) t. = D 2 C(x,t) x 2. 4Dt dx '

Section 12: Intro to Devices

Technology for Micro- and Nanostructures Micro- and Nanotechnology

Semiconductor Technology

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6

Chapter 7 Plasma Basic

Section 12: Intro to Devices

Wet and Dry Etching. Theory

Plasma Deposition (Overview) Lecture 1

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

Nanostructures Fabrication Methods

MOSFET: Introduction

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Lecture 7 Oxidation. Chapter 7 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/82

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

Chapter 8 Ion Implantation

Section 6: Ion Implantation. Jaeger Chapter 5

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project

There's Plenty of Room at the Bottom

Chapter 7. Plasma Basics

Extensive reading materials on reserve, including

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

Atomic layer deposition of titanium nitride

Plasma Processing in the Microelectronics Industry. Bert Ellingboe Plasma Research Laboratory

Ion implantation Campbell, Chapter 5

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

Agenda. 1. Atomic Layer Deposition Technology

Defense Technical Information Center Compilation Part Notice

Accelerated Neutral Atom Beam (ANAB)

CMOS. Technology Doping Profiles. Simulation of 0.35 Ixm/0.25 INTRODUCTION

EE143 Fall 2016 Microfabrication Technologies. Lecture 7: Ion Implantation Reading: Jaeger Chapter 5

Device Fabrication: Etch

Patterning Challenges and Opportunities: Etch and Film

Review of Semiconductor Fundamentals

DO NOT WRITE YOUR NAME OR KAUST ID NUMBER ON THIS PAGE OR ANY OTHER PAGE PUT YOUR EXAM ID NUMBER ON THIS PAGE AND EVERY OTHER PAGE YOU SUBMIT

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

Equipment Innovation Team, Memory Fab. Center, Samsung Electronics Co. Ltd. San#16, Banwol, Taean, Hwansung, Kyungki, , Republic of Korea

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

A. Optimizing the growth conditions of large-scale graphene films

Transcription:

EE-612: Lecture 22: CMOS Process Steps Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1

outline 1) Unit Process Operations 2) Process Variations Lundstrom EE-612 F06 2

unit process operations 1) Oxidation 2) Diffusion 3) Ion Implantation 4) RTA/RTP 5) Chemical Vapor Deposition 6) Lithography 7) Etching 8) Metalization 9) Well Structures 10) Isolation 11) Source / Drain structures Lundstrom EE-612 F06 3

useful references 1) J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Fundamentals, Practice, and Modeling, Prentice Hall, Upper Saddle River, NJ, 2000. 2) S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd Ed., Oxford Univ. Press, New York, 2001. Lundstrom EE-612 F06 4

oxidation Si + O 2 SiO 2 Si+ H 2 O SiO 2 (dry) (wet) wafers heater O 2 or H 2 O +carrier gas T = 800-1100 o C fused quartz furnace tube Lundstrom EE-612 F06 5

oxidation and doping C phophorous m > 1 boron m < 1 x m = C Si C SiO2 Lundstrom EE-612 F06 6

local oxidation Si 3 N 4 SiO 2 Si Lundstrom EE-612 F06 7

local oxidation (LOCOS) Si 3 N 4 SiO 2 field oxide Si 'bird's beak' Lundstrom EE-612 F06 8

constant source diffusion dopant-containing gas (e.g. POCl 3 ) C C S C(x) = C S erfc( x /2 Dt) Q = C x,t dx = 2C S Dt π 0 time ( ) x Lundstrom EE-612 F06 9

Limited source diffusion C C( x,t)= ( Q / π Dt )exp x /2 Dt ( ) 2 C S t = 0 predep time x Lundstrom EE-612 F06 10

diffusion Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si substitutional interstitialcy interstitial D(T ) = D 0 e E A /k B T oxidation enhanced diffusion Lundstrom EE-612 F06 11

ion implantation energetic ions bombard silicon wafer B magnet F = Q r υ r B acceleration deflection wafer I ion source Lundstrom EE-612 F06 12

ion implantation Si R P (E) N x ΔR P (E) ()= N p exp x R p ( ) 2 2ΔR p 2 implant damage (anneal) Q = 2π N p ΔR p Lundstrom EE-612 F06 13

ion implantation (ii) 1.0 B Projected range (μm) 0.1 As 0.01 10 100 1000 Acceleration energy (kev) Lundstrom EE-612 F06 14

channeling C() x ΔR P tilted 3 deg R P x Lundstrom EE-612 F06 15

rapid thermal annealing reflector lamps quartz window thermal budget Dt wafer gas inlet Lundstrom EE-612 F06 16

chemical vapor deposition reaction chamber Dt gas inlet wafer susceptor gas exhaust 2SiH 4 + 4NH 3 Si 3 N 4 + 12H 2 SiH 4 Si+2H 2 SiH 4 +O 2 SiO 2 +2H 2 silicon nitride poly silicon silicon dioxide Lundstrom EE-612 F06 17

plasma CVD / etching RF power in gas inlet heater wafer lower temperature reduces thermal budget Dt gas exhaust Lundstrom EE-612 F06 18

lithography optical source wavelength, λ lens shutter mask resist contact or proximity wafer expose, develop, etch Lundstrom EE-612 F06 19

projection printing α UV source lens 1 mask lens 2 wafer Lundstrom EE-612 F06 20

registration errors EE E E E EE EE misalignment run out Lundstrom EE-612 F06 21

phase shift lithography conventional mask phase shift mask electric field at mask electric field at mask intensity at wafer intensity at wafer Lundstrom EE-612 F06 22

pattern transfer negative resist (less soluble after exposure) wafer wafer positive resist (more soluble after exposure) resist: optically sensitive polymer which, when exposed to UV changes its solubility in specific chemicals wafer Lundstrom EE-612 F06 23

etching wet chemical etching (isotropic) dry etching (plasma or reactive ion etching - RIE) (anisotropic) wafer wafer undercut chemicals react with underlying material, but not resist ionized gases react with underlying material, but not resist Lundstrom EE-612 F06 24

pattern transfer (ii) mask chrome L Drawn lithography bias resist etch bias L Gate (physical) Lundstrom EE-612 F06 25

metalization Tungsten (W) plugs for first layer metal dep CMP www.itrs.net 2005 Edition Lundstrom EE-612 F06 26

outline 1) Unit Process Operations 2) Process Variations Lundstrom EE-612 F06 27

discrete doping effects V = W L x j N + N + example: L = 50 nm W = 100 nm x j = 25 nm N A = 10 18 cm -3 N TOT = 125 P (N A cm-3) Number of dopants in the critical volume is a statistical quantity Lundstrom EE-612 F06 28

discrete doping effects (ii) source drain Effects: 1) σ VT (10 s of mv) 2) lower avg. V T (10 s of mv) 3) asymmetry in I D 3D transport leads to inhomogeneous conduction (see Wong and Taur, IEDM, 1993, p. 705) Lundstrom EE-612 F06 29

discrete doping effects (iii) 35 nm MOSFET AFM measurements, Fujitsu (simulations from A. Asenov group, Univ. of Glasgow) Lundstrom EE-612 F06 30

statistical variability Line edge roughness discrete dopants From A. Asenov, Univ. of Glasgow Lundstrom EE-612 F06 31

variability is becoming a major issue G. Declerck, Keynote talk, VLSI Technol. Symp. 2005 Lundstrom EE-612 F06 32

outline 1) Unit Process Operations 2) Process Variations For a basic, CMOS process flow for an STI (shallow trench isolation process), see: http://www.rit.edu/~lffeee/advcmos2003.pdf Lundstrom EE-612 F06 33

CMOS process flow For a basic, CMOS process flow for an STI (shallow trench isolation process), see: http://www.rit.edu/~lffeee/advcmos2003.pdf The author is indebted to Dr. Lynn Fuller of Rochester Institute of Technology for making these materials available. What follows is a condensed version of a more complete presentation by Dr. Fuller. I regret any errors that I may have introduced by shortening these materials. -Mark Lundstrom 10/19/06 Lundstrom EE-612 F06 34