Introduction to Photolithography

Similar documents
Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen

Lecture 0: Introduction

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

IC Fabrication Technology

LECTURE 5 SUMMARY OF KEY IDEAS

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Fabrication Technology, Part I

nmos IC Design Report Module: EEE 112

EE-612: Lecture 22: CMOS Process Steps

Chapter 3 Engineering Science for Microsystems Design and Fabrication

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

Carrier Transport by Diffusion

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Introduction. Photoresist : Type: Structure:

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography

Ion Implantation ECE723

Top down and bottom up fabrication

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

EE C245 ME C218 Introduction to MEMS Design Fall 2007

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

Introduction to Plasma

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009.

Wet and Dry Etching. Theory

Optical Proximity Correction

EE 434 Lecture 7. Process Technology

5. Photochemistry of polymers

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Lithography and Etching

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

6.5 Optical-Coating-Deposition Technologies

Chapter 3 Basics Semiconductor Devices and Processing

CHAPTER 6: Etching. Chapter 6 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

EE C245 ME C218 Introduction to MEMS Design Fall 2007

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

EE 527 MICROFABRICATION. Lecture 25 Tai-Chang Chen University of Washington

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

ETCHING Chapter 10. Mask. Photoresist

Lecture 1: Vapour Growth Techniques

Far IR Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Nano fabrication by e-beam lithographie

Introduction to Electron Beam Lithography

Solutions for Assignment-6

Photolithography II ( Part 1 )

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

Etching: Basic Terminology

EE130: Integrated Circuit Devices

Diffusion and Ion implantation Reference: Chapter 4 Jaeger or Chapter 3 Ruska N & P Dopants determine the resistivity of material Note N lower

Thin Wafer Handling Challenges and Emerging Solutions

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Solutions for Assignment-8

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Semiconductors Reference: Chapter 4 Jaeger or Chapter 3 Ruska Recall what determines conductor, insulator and semiconductor Plot the electron energy

Chapter 2. Design and Fabrication of VLSI Devices

Physics and Material Science of Semiconductor Nanostructures

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey.

EE C245 ME C218 Introduction to MEMS Design Fall 2010

CVD: General considerations.

Microfabrication for MEMS: Part I

Make sure the exam paper has 9 pages (including cover page) + 3 pages of data for reference

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Plasma Deposition (Overview) Lecture 1

Far IR (FIR) Gas Lasers microns wavelengths, THz frequency Called Terahertz lasers or FIR lasers At this wavelength behaves more like

Pattern Transfer- photolithography

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Lecture 15 Etching. Chapters 15 & 16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/76

Overview of the main nano-lithography techniques

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Film Deposition Part 1

Clean-Room microfabrication techniques. Francesco Rizzi Italian Institute of Technology

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

per chip (approx) 1 SSI (Small Scale Integration) Up to 99

Chen et al. (45) Date of Patent: Dec. 5, (54) EFFECTIVE PHOTORESIST STRIPPING (56) References Cited

EE C245 ME C218 Introduction to MEMS Design

Introduction to Electronics and Semiconductor

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur

Semiconductor Technology

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using

Fabrication Technology for Miniaturization

Nanostructures Fabrication Methods

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

Fast Bonding of Substrates for the Formation of Microfluidic Channels at Room Temperature

Chapter 2. The Well. Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance. Baker Ch. 2 The Well. Introduction to VLSI

EECS143 Microfabrication Technology

Photolithography Overview 9/29/03 Brainerd/photoclass/ECE580/Overvie w/overview

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

Semiconductor Physics and Devices

Molecular Electronics For Fun and Profit(?)

Transcription:

http://www.ichaus.de/news/72 Introduction to Photolithography

Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is a crucial part. They may be presented as part of a lecture introducing the lithography activity.

Photolithography is the central technology in fabricating integrated circuits (ICs) ere is a photo tour of an IC fabrication plant http://www.extremetech.com/computing/853 04-intelmicron-fabrication-plant-tour?print

Typical Integrated Circuit Element: A MOSFET Transistor Idealized transistor design With permission from: Andrew BarronApplications for Silica Thin Films http://cnx.org/content/m24883/1.5/

Actual CMOS transistors as made on a wafer Transistor dimensions are less than 100 nanometers http://www.computerhistory.org/

Microfabrication Step 1: Circuit Design Design the 3D circuit structure. Turn this: Schematic diagram Into this: 3-D layout of components Photo courtesy IBM http://www.kasap.usask.ca/photos/

Microfabrication Step 2: Mask Design Divide the structure into horizontal layers Capture the design of each 2-D layer in a photomask Figures from www.technologystudent.com/elec1/ic2.htm, 2006, V. Ryan

The Circuit Photomask The photomask is the master pattern for all the circuit elements across the whole wafer for one layer Used repeatedly to make many, many copies http://www.electrooptics.com/features/feature.php?feature_id=126

Microfabrication Using a mask and photolithography, we can replicate complicated circuits with millions of components in a very small space. undreds of circuits made on each wafer; cut up, packaged, and tested Basis for relatively inexpensive, powerful electronics http://amath.colorado.edu/cmsms/index.php?page=an-immersedinterface-method-for-modeling-semiconductor-devices

Making the Photomask Photomask generator, University of Minnesota Nano Center Photo: James Marti, University of Minnesota

Microfabrication Step 3: Set up Process Steps Determine how to form each layer add material(deposition): build up a thin film of metal, insulator, or semiconductor material remove material (etching): take away previously deposited material from selected areas. This is similar to sculptinga block of stone or machining a block of metal to produce a structure to match the design. modify a layer: Doping: intentionally adding ionized impurities to tailor the layer s electrical properties Oxidation: exposing a previously deposited layer (e.g., silicon, a semiconductor) to oxygen to make an oxide(e.g., silicon dioxide, a good insulator).

Deposition Processes Depositing metal films Thermal Evaporation e-beam Evaporation Sputtering Figures from: http://www.vacuum-guide.com/english/equipment/ae_thin_film_deposition.htm

Deposition Processes Items to be coated (substrates)are placed in a vacuum chamber. A vapor of metal atoms is created in the chamber, which will coat all exposed surfaces in the chamber including the substrates. In thermalevaporation, a block or wire of metal is heated with a resistive heating element to form the metal vapor. In electron-beam evaporation, a block of metal is heated when a beam of energetic electrons is caused to impact the metal. In sputtering, an ionized gas (a plasma) is formed and electrically attracted to a solid sheet of metal. This causes metal atoms to enter the vapor phase and move to the substrate, coating it.

Deposition Processes Depositing semiconductors and insulators. Sputtering can be used Also used is Chemical Vapor Deposition. Reactive chemicals (precursors) are introduced into the vacuum chamber where they react in the vapor phase. The reaction products form a condensing compound that coats the substrate with a thin, regular film. http://www.mechanicalengineeringblog.com/tag/graphene-properties/

Doping Layer Modification To make a useful component like a transistor or diode, a semiconductor like silicon must have certain impurities added. These are called dopants. Common dopants include boron, aluminum, gallium, nitrogen, phosphorus, and arsenic. Oxidation A pure layer of silicon can have its surface turned into silicon dioxide (a very good insulator) by placing it into a hot oven with a pure oxygen atmosphere.

Dopant introduction Dopant atoms are introduced into a silicon substrate by either Vapor deposition Diffusion of gas-phase atoms Ion Implantation Accelerating a beam of dopant ions at the surface

Dopants by ion implantation A beam of energetic dopant ions is impacted into the silicon surface, implanting the ion in the solid. These impacts introduce undesirable flaws in the silicon crystal, which must be repaired by annealing the materials at high temperature. http://eng.thesaurus.rusnano.com/upload/iblock/1ba/ion%20implantation1.jpg with permission

Dopants by vapor diffusion Gas-phase atoms are introduced into a vacuum chamber where they can diffuse into the solid silicon. Elevated temperatures must be used to speed up the diffusion. http://www.memsnet.org/mems/processes/deposition.html

Microfabrication Step 4: Pattern Transfer The pattern is contained in the photomask. To replicate this pattern on a wafer substrate: Deposit liquid photoresist on wafer by spin coating Pattern the resist via exposure to light through the photomask Develop the photoresist Expose wafer to etchant. This attacks any exposed areas and sculpts the wafer according to the pattern. Wash the wafer Repeat for next layer

Photolithography process schematic http://ahshonorschemistry.wikispaces.com/a-silicon+wafer+patterned with permission

Applying the Photoresist to a Substrate Photoresist is a liquid chemical. It may be applied to the silicon wafer in many ways, but is most commonly spin coated. A spin coater is a small, enclosed turntable that can spin at around 3000 rpm. It holds the wafer on its platter with a vacuum.

Applying the Photoresist to a Substrate First, a small amount of photoresist is applied to the wafer, then the wafer is spun to spread out the resist. Typically only 1% of the resist ends up on the wafer; the rest is spun off.

Applying the Photoresist to a Substrate The photoresist dries by solvent loss as it thins out via spinning. Liquid Photoresist Liquid Photoresist Wafer substrate The result is a thin, uniform layer. Wafer substrate Dried Photoresist

Baking the Photoresist The photoresist will still have some solvent left in it after spinning. It is heated slightly (the soft bake ) to drive off any remaining solvent. Wafer substrate Dried Photoresist ot plate The wafer is now ready for exposure.

Photoresist Exposure In the simplest form of lithography, called contact lithography, the photomask is placed on the photoresist-coated wafer, and intense light is applied. Wherever the mask has openings, the resist is exposed and undergoes a chemical change. Exposure Light Photomask with openings Unexposed photoresist

Photochemistry When light strikes the photoresist, its molecules under go a chemical reaction. The type of reaction depends on the type of resist used, either a negative or positive resist. In a negative resist, the areas exposed to light become less soluble in a water-based solution called developer. The exposed areas remain while the rest of the resist is dissolved away. In a positive resist, the areas exposed to light become more soluble in the developer. These areas are dissolved away in the developer, leaving everything else untouched.

Negative and Positive Photoresists Exposed photoresist on wafer Negative resist: open space in mask becomes an opaque feature on the wafer. Positive resist: open space in mask remains an open feature on the wafer.

Photoresist Chemistry Photoresists consist of polymermolecules dissolved in a solvent. Three very simple polymer molecules are shown here. The C s represent carbon atoms, the s are hydrogen atoms, and the hexagon is a 6-carbon ring. The pattern can repeat many thousands of times in a polymer. C C C C C C C C C C C C C O O

Photoresist Chemistry When light strikes these polymer molecules, they undergo a chemical reaction. The type of reaction depends on the type of resist used. In a negative resist, light exposure may make the polymers crosslink, which means they bond to neighboring molecules to form a strong network, like this: C C C C C C C C These larger polymer molecules are much less soluble in a solvent (like the developer). So any spot on the resist-coated wafer that was exposed to light will not dissolve when the wafer is immersed in the developer solution. The unexposed (and thus un-reacted) molecules, on the other hand, will dissolve away in the developer. C C C C

Photoresist Chemistry When a positive resist is exposed to light, the polymer molecules tend to break into smaller fragments. These smaller, lighter molecules are more likely to dissolve (or will dissolve more quickly) in the developer. The reaction with light may also create polarregions on the molecule, making it more likely to dissolve in water or water based solutions. So any spot on the resist-coated wafer that was exposed to light will readily dissolve when the wafer is immersed in the developer solution. The unexposed resist molecules will remain on the wafer.

Developer Chemistry After the photoresist-coated wafer has been exposed to light, it is immersed in a water-based solution called developer. Photoresists are formulated so that the areas to be removed are acidic. If these acidic areas are exposed to a basic (or alkaline) solution, they will react and dissolve in the developer. Acidic group O Base O Molecule soluble in water C O C O - K + KO 2 O Developers are often basic solutions, such as potassium hydroxide (KO) or sodium hydroxide (NaO) in water.

Optical Systems for Exposing the Photoresist Exposure systems must have intense light sources and precision optics to focus the light This mercury arc lamp produces intense light in the blue, violet, and ultraviolet wavelengths Photo: Osram Sylvania

Contact and Projection Systems In contact lithography, the mask is laid on the photoresist-covered wafer. Mask in contact with wafer Wafer substrate The mask pattern is directly reproduced in the resist no change in size.

Contact and Projection Systems In projection lithography, the mask patern is reduced in size using lenses. Lens Mask The mask pattern is reduced by 5-10x in the resist, which allows much smaller features to be made. Exposed pattern in resist is much smaller than in the mask Lens

Step 5: Etching Processes Wet (chemical) etching Use a chemical that will dissolve the material that needs to be removed, while not interacting (as much) with the masking layer For Si, SiO 2,hydrofluoric acid is used Dry Etching Uses reactive ions/plasma to attack material Material is forced into vapor phase and pumped away

Wet (chemical) etching Results of Etching Rapid, isotropic (etches out as fast as down, may under-etch a feature) Dry Etching Slower, anisotropic (can etch straight walls with a high aspect ratio) Wet etching. Dry reactive ion (DRIE) etching. Photo: Futurrex Inc. Photo: University of Minnesota Nanofabrication Center

Step 6: Repeat Wafer is washed, and the next layer is built using same series of steps: Deposit film layer Modify if desired Transfer pattern using photomask and resist Etch A typical IC can have over 15 layers

An animated summary of the making of an integrated circuit can be found here: The making of a chip -Youtube video www.youtube.com/watch?v=d9swnlzva8g

Mask Patterns 1 2 3 4

Module Title: Photolithography Module section title: Graphical Content Version Number: 3 Date modified: 08/29/12 Author: James Marti, Ph.D., University of Minnesota

Module Title: Photolithography Module section title: Graphical Content Version Number: 3 Date modified: 08/29/12 Author s initials: JM