EFFECTS OF CORRELATION OF SOURCE PARAMETERS ON GROUND MOTION ESTIMATES

Similar documents
Near-Source Ground Motion along Strike-Slip Faults: Insights into Magnitude Saturation of PGV and PGA

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING

A Recursive Division Stochastic Strike-Slip Seismic Source Algorithm Using Insights from Laboratory Earthquakes

Outstanding Problems. APOSTOLOS S. PAPAGEORGIOU University of Patras

CHARACTERIZING EARTHQUAKE SLIP MODELS FOR THE PREDICTION OF STRONG GROUND MOTION

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

High-Frequency Ground Motion Simulation Using a Source- and Site-Specific Empirical Green s Function Approach

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

Characterizing Earthquake Rupture Models for the Prediction of Strong Ground Motion

Developing ENA GMPE s Using Broadband Synthe=c Seismograms from Finite- Fault Simula=ons

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING

VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT

Simulation of earthquake rupture process and strong ground motion

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING

SIMULATING STRONG GROUND MOTION FROM COMPLEX SOURCES BY RECIPROCAL GREEN FUNCTIONS ABSTRACT

Dynamic source modeling of the 1978 and 2005 Miyagi oki earthquakes: Interpretation of fracture energy

SCENARIO MODELING OF THE 2014 Mw6.0 SOUTH NAPA, CALIFORNIA, EARTHQUAKE USING AN ADVANCED BROADBAND KINEMATIC SOURCE MODEL

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE

Directivity of near-fault ground motion generated by thrust-fault earthquake: a case study of the 1999 M w 7.6 Chi-Chi earthquake

Graves and Pitarka Method

Distinguishing barriers and asperities in near-source ground motion

PREDICTION OF STRONG MOTIONS FROM FUTURE EARTHQUAKES CAUSED BY ACTIVE FAULTS CASE OF THE OSAKA BASIN

Simulation of Near-Fault Strong-Ground Motion Using Hybrid Green s Functions

CONTROLLING FACTORS OF STRONG GROUND MOTION PREDICTION FOR SCENARIO EARTHQUAKES

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Mach wave properties in the presence of source and medium heterogeneity

Coupling of the random properties of the source and the ground motion for the 1999 Chi Chi earthquake

Synthetic Seismograms Using a Hybrid Broadband Ground-Motion Simulation Approach: Application to Central and Eastern United States

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Hemanth Siriki 1, Harsha S. Bhat 2,Xiao Lu 3,Swaminathan Krishnan 4. Abstract

EFFECT OF RANDOM PARAMETERS IN SEMI-EMPIRICAL METHOD ON THE RESULTS OF GROUND MOTION PREDICTIONS

A Theoretical Omega-Square Model Considering the Spatial Variation in Slip and Rupture Velocity

Magnitude-Area Scaling of Strike-Slip Earthquakes. Paul Somerville, URS

FINSIM---a FORTRAN Program for Simulating Stochastic Acceleration Time Histories from Finite Faults

Hybrid k-squared source model for strong ground motion simulations: Introduction

Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake

SDSU Module Kim Olsen and Rumi Takedatsu San Diego State University

Mechanics of Earthquakes and Faulting

Seismic hazard analysis of Tianjin area based on strong ground motion prediction

Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis

Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique

ASSESSMENT OF DESIGN BASIS EARTHQUAKE GROUND MOTIONS FOR NEAR-FAULT CONDITIONS

SCEC Broadband Platform (BBP) Simulation Methods Validation for NGA-East

Synthetic Seismicity Models of Multiple Interacting Faults

RUPTURE MODELS AND GROUND MOTION FOR SHAKEOUT AND OTHER SOUTHERN SAN ANDREAS FAULT SCENARIOS

Strong Ground Motion Prediction of Future Large Earthquake from Niavaran Fault in Tehran, Iran by Finite Fault Method

ESTIMATION OF NEAR-FAULT STRONG GROUND MOTIONS FOR KEY ENGINEERING STRUCTURES

2C09 Design for seismic and climate changes

Variability of Near-Field Ground Motion from Dynamic Earthquake Rupture Simulations

Mach wave properties in the presence of source and medium heterogeneity

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN

Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency

(Somerville, et al., 1999) 2 (, 2001) Das and Kostrov (1986) (2002) Das and Kostrov (1986) (Fukushima and Tanaka, 1990) (, 1999) (2002) ( ) (1995

Spatial distribution of ground shaking

Constraints from precariously balanced rocks on preferred rupture directions for large earthquakes on the southern San Andreas Fault

UPDATED GRAIZER-KALKAN GROUND- MOTION PREDICTION EQUATIONS FOR WESTERN UNITED STATES

SUPPLEMENTARY INFORMATION

Effects of Surface Geology on Seismic Motion

Dynamic stress field of a kinematic earthquake source model

The SDSU Broadband Ground Motion Generation Module BBtoolbox Version 1.5

Kinematic Modeling of Strong Ground Motions

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS

Near-fault strong motion complexity of the 2000 Tottori earthquake (Japan) from a broadband source asperity model

PUBLICATIONS. Journal of Geophysical Research: Solid Earth

JournalofGeophysicalResearch: SolidEarth

Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters

Evidence for a Supershear Transient during the 2002 Denali Fault Earthquake

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Effects of Surface Geology on Seismic Motion

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Dynamic source inversion for physical parameters controlling the 2017 Lesvos earthquake

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

Spectral Element simulation of rupture dynamics

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

Near-Field Ground Motion of the 2002 Denali Fault, Alaska, Earthquake Recorded at Pump Station 10

GROUND MOTIONS FROM LARGE EARTHQUAKES (MW³7) ON THE SANTA MONICA MOUNTAIN THRUST AND HOLLYWOOD-SANTA MONICA-MALIBU FAULTS

Knowledge of in-slab earthquakes needed to improve seismic hazard estimates for southwestern British Columbia

EARTHQUAKE SOURCE PARAMETERS OF MODERATELY EARTHQUAKE IN THE SOUTH EASTERN IRAN BASED ON TELESEISMIC AND REGIONAL DISTANCES

PEAK ACCELERATION SCALING STUDIES

A Guide to Differences between Stochastic Point Source and Stochastic Finite Fault Simulation Methods

Keywords: Drab-e-Astane earthquake, Empirical green's function, Kostrov slip function, Simulation.

Research Engineer, Technology Center, Taisei Corporation, Yokohama Japan

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Which Dynamic Rupture Parameters Can Be Estimated from Strong Ground Motion and Geodetic Data?

Synthetic Earthquake Ground Motions for the Design of Long Structures

Effects of Surface Geology on Seismic Motion

Surface Rupture in Kinematic Ruptures Models for Hayward Fault Scenario Earthquakes

To Editor of Bulletin of the Seismological Society of America

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

Potency-magnitude scaling relations for southern California earthquakes with 1.0 < M L < 7.0

Constraining earthquake source inversions with GPS data: 2. A two-step approach to combine seismic and geodetic data sets

Transcription:

4 th International Conference on Earthquae Geotechnical Engineering June 5-8, 007 Paper No. 84 EFFECTS OF CORRELATION OF SOURCE PARAMETERS ON GROUND MOTION ESTIMATES Ralph J. ARCHULETA, Jan SCHMEDES, Pengcheng LIU 3 ABSTRACT Estimates of broadband ground motion from scenario earthquaes from inematic models requires specifying the correlation between the source parameters. Most often, the correlation is assumed to be zero. However, there are hints from inversions of strong motion data and from dynamic models of spontaneously propagating shear fractures that the inematic parameters are correlated. The correlation can affect the ground motion especially if the slip and rupture velocity are strongly correlated. The rupture velocity is critical in describing the source process. Inhomogeneities in the average rupture velocity have a strong influence on the development of the near source directivity pulse as well as the generation of high frequencies. Additional complications arise from ruptures that travel with supershear velocity. To investigate the influence of a correlation between slip and rupture velocity both subshear and supershear, we use a new method (Liu et al., 006) that is the first to account for correlations between source parameters. In this method the slip wavenumber distribution is a spatial random field; the slip amplitudes follow a truncated Cauchy distribution. The rise times follow a beta distribution and the average rupture velocity between the hypocenter and a point on the fault is uniformly distributed. We construct a inematic model where the average rupture velocity on the fault is spatially correlated with the slip amplitude; similarly the rise time is spatially correlated with the slip amplitude. We show an example where the average rupture velocity is supershear, which produces a pattern of ground motion much different from subshear. Keywords: earthquae source, ground motion, rupture velocity, supershear INTRODUCTION Prediction of realistic time history of ground motion from future earthquaes is essential to completely describe earthquae hazard. While we cannot now the exact time of the next damaging earthquae, geologists, seismologists and geodesists have delineated faults that are capable of producing large magnitude earthquaes in urban areas. To reduce the hazard we discuss predictions for a range of broadband strong ground motion that capture the effects of i) a rupture on a finite fault, ii) the complexity of the three dimensional Earth model and iii) local site conditions. A credible model of the complex source process is essential for the prediction of ground motion. Although efforts have been made to implement the dynamic modeling of extended source models to predict ground motions (Guatteri, et al., 003), high-frequency dynamic fault models are still quite difficult and computationally expensive. Although the computational limits can be overcome to some degree, these models will be restricted to low frequencies (less than -3Hz). Kinematic modeling remains as one of the best approaches to incorporate many aspects of physical models of the earthquae process while still being able to compute broadband strong ground motion. We have Professor, Department of Earth Science, University of California, Santa Barbara, USA, Email: ralph@crustal.ucsb.edu Graduate Student, Department of Earth Science, University of California, Santa Barbara, USA 3 Research Geophysicist, Institute for Crustal Studies, University of California, Santa Barbara, USA

developed a technique for inematic modeling of an extended earthquae source that is based on distribution functions for the slip amplitude, duration of slip (rise time) and rupture time (Liu et al., 006). The complexity of the source process is represented by spatial distributions of randomized source parameters, but the integrated characteristics of these parameters will be constrained by the total moment (magnitude), radiated energy and the high-frequency decay of the spectral amplitudes in the source spectrum. Figure : Flowchart of scheme for generating broadband synthetics. We will use the inematic source model and a threedimensional Earth model to calculate synthetic ground motions for frequencies up to one to two Hertz. The 3D model incorporates the geometry of the geology in the area, including the deep basin structures. We also compute ground motions with the frequency up to 5-0 Hz using a D model where the travel times are consistent with the 3D model. Because strong ground motions, especially the high-frequency ground motion, can induce nonlinear soil response near the surface, we first deconvolve the D ground motion to the bedroc level using the available geotechnical information. This bedroc time history is propagated to the surface using a D nonlinear wave propagation code (e.g., Bonilla et al., 998; Hartzell et al., 004). The 3D ground motions (low-frequency) and high-frequency components of D synthetics (with consideration of nonlinear effects) are stitched together to form a broadband time histories of ground motion (Figure ). STATISTICALLY DEFINED, CORRELATED KINEMATIC PARAMETERS In contrast to the pseudo-dynamic source model description of Guatteri et al (003), which utilizes the fracture energy to derive the rupture velocity, the average rupture velocity is directly correlated with slip on the fault in our approach (Liu at al., 006). Hence the used inematic source description is based on correlated random distributions for the slip amplitude, the average rupture velocity, and the rise time on the fault. It allows for the specification of source parameters independent of any a priori inversion results. The wavenumber distribution of the slip on the fault is based on the wor of Mai and Beroza (00). The slip amplitudes follow a truncated Cauchy distribution (Lavallée & Archuleta, 003). Using a NORmal To Anything (NORTA) method (Cario and Nelson, 997) it is possible to construct the average rupture velocity on the fault as a random field that follows a uniform distribution and that is spatially correlated (30 %) with the slip amplitude on the fault

the rise time on the fault as a random field that follows a beta distribution and that is spatially correlated (60 %) with the slip amplitude on the fault For given slip amplitudes and rise time we construct a slip rate function consistent with dynamic modeling Liu et al (006). The high frequency Greens functions are computed using the frequency wavenumber method (Zhu & Rivera, 00). To get the high frequency synthetics for a given station we use a standard representation theorem that convolves the spatial varying slip rate function on the fault with the computed Greens functions and integrates this combination over the fault. To account for the effect of scattering on the high frequency radiation pattern, a frequency-dependent perturbation of azimuth, dip and rae of each subfault is implemented similar to Pitara et al. (00). Rather than randomizing the strie, which tends to be quite stable over tens of ilometers, we randomize the azimuth at which waves approach a station. Nonlinear site effects are then incorporated into the D ground motions based on the site category (e.g., Bonilla et al., 998; Hartzell et al., 004). We use a three-dimensional (3D) Earth model to calculate synthetic ground motions for frequencies up to one to two Hertz. Finally the 3D ground motion (low-frequency) and high frequency components of D synthetics are stitched together to form a broadband time histories of ground motions. At present we choose a crossover frequency at Hz. With better 3D structure and with our improved FD code, we can efficiently simulate low-frequency wave propagation in a 3D structure up to Hz. A detailed description of this approach can be found in Liu et al. (006). To simulate stochastically the inematic faulting process we divide the fault of the mainshoc into subevents. For each subevent we prescribe the slip history. In our model each subevent represents a point source with parameters consisting of the local slip amplitude, rupture velocity, and rise time all of which are poorly constrained for future earthquaes. In order to allow for our inadequate a priori nowledge we describe these parameters as random variables with probability distribution functions that are bound by estimates of the parameters based on past earthquaes. The stochastic distribution of a source parameter (slip amplitude, risetime, or rupture velocity) is constructed by filtering a white noise using a decay filter in the two-dimensional wavenumber domain. The filter has the form (Mai and Beroza, 00): { }, F( x, y ) = + ( x C L ) + ( y C W ) () where C L and C W are correlation lengths along strie and dip, respectively. They are calculated using the empirical relations obtained by Mai and Beroza (00): log 0 (C L ) =.5 + M w /, and log 0 (C W ) =.5 + M w /3. () PDF Rupture Velocity.5.5 0.5 0. 0.4 0.6 0.8 PDF Risetime.5.5 0.5 0. 0.4 0.6 0.8 PDF Slip.5.5 0.5 4 3 Vavg/Vs τ/τmax slip/ slipmax 0. 0.4 0.6 0.8 0. 0.4 0.6 0.8 sliprate Figure : Normalized shapes of distributions (PDF s) and sliprate function used for inematic modeling. The white noise for slip amplitudes is generated by

a truncated Cauchy probability distribution (Lavallée and Archuleta, 003): p(d) = C + [(D D 0 ) )], 0 D D (3) max with the constraint: the maximum slip of the target event D max = 3.5 D ; C is a normalizing factor. The factor is determined such that the generated random variables have a mean value of D. We adjust D 0 to match the energy radiated from our inematic source model with the radiated energy of the mainshoc. We use Brune s - source spectrum (Brune, 970) to calculate the energy radiated from a large event. Given the rupture velocity, risetime, and slip-rate function defined below, we find that D 0 0.5 D. We chose the probability distribution of rupture velocity and risetime based on three observations: (i) the areas of large slips correlate with high rupture velocities; (ii) most finite fault inversions have found large slip located in a few small areas; and (iii) the average rupture velocity is around 0.8Vs. To reflect these characteristics, we calculate the rupture velocities V r using a uniform distribution between 0.6 and.0 Vs. Dynamic modeling of complex rupture process shows that the areas of large slip correlate with fast rupture velocity. We assume that the correlation between secant (average between hypocenter and a point on the fault) rupture velocity (Day, 98) and slip is about 30% and the correlation between rise-time and slip is 60%. For the rise time we consider a Beta distribution: p( ) = C( min )( max ) ; min max (4) We assume max = 5 min where max is determined by matching the spectral levels at high frequency, basically infinity, in Brune s - model. The slip rate function (Figure, bottom plot) is a principal component in the prediction of broadband ground motion. Our slip rate function consists of sine and cosine functions. At high frequency its spectrum has - decay. Moreover, both the first and second derivative of the slip rate function has a non-zero value at its starting time the initial phase of the simulated rupture process will radiate highfrequency energy (see more discussion below). Also note that the slip rate function is not symmetric characteristic of slip rate functions determined in dynamic simulations (e.g., Day, 98; Andrews, 976). VALIDATION AND VERIFICATION We have validated the method using data from 30 stations that recorded the Northridge earthquae (Liu et al., 006). The parametric uncertainty consists of the uncertainties in our input parameters: ) seismic moment, corner frequency of the mainshoc, geometry of the main fault (strie, dip, length, and width), and location of the hypocenter. Effects of the uncertainties in these parameters can be considered by performing several predictions separately using a wide range of values for these parameters. The bias of the i th estimated ground motion parameter derived from M simulations is given by: M B i = M [ln(s i ) ln(o i )] M = [ M ln(s i )] ln(o i ) (5)

and the standard error of the estimate is given by E i = = M M [(ln(s i ) ln(o i )) B i ] M M [(ln(s i )] [ M M ln(s ) ] i. (6) (Abrahamson et al., 990, Schneider et al., 993). The average bias and standard error over N data are N ˆB = B i and Ê = N i N E i, (7) N i respectively. Combining ˆB and Ê we have complete estimation of the modeling uncertainty in our method. The results for the Northridge validation are shown in Figure 3. Ln(FA_syn/FA_dat) Ln(SA_syn/SA_dat) - 0-0 - 0 0 0 0 - - Acceleration Fourier Amplitude D D+3D 0-0 0 0 Frequency (Hz) Acceleration Response Spectrum D 0 - - 0-0 0 0 D+3D 0 - - 0-0 0 0 Period (Sec) Figure 3: Average bias with standard error for our broadband simulations using 30 stations. Top is Fourier amplitude and bottom is response spectrum. D refers to results from a purely D model; D+3D are for low frequencies in 3D and high frequencies in D. The salient points of our approach are: ) the bias and error are as small if not smaller than other methods; ) combining D and 3D reduces slightly the misfit at low frequencies (the large misfit below 0. Hz is because the data are filtered below 0. Hz); 3) the faulting model used to generate the broadband synthetics is not constrained by an a priori inversion result; 4) the modeling is independent of specific values for slip rate at a point on the fault. SUPERSHEAR RUPTURE Earthquae scenarios using constant rupture velocity have generally been used to investigate the influence of rupture velocity on ground motion. Dunham and Archuleta (005) computed near source ground motion from steady state rupture pulses for both subshear and supershear ruptures. For the supershear case they find a planar wavefront emanating from the fault and carrying an exact history of the slip rate on the fault. Because the wavefront is planar in the near field, there is no geometrical spreading to attenuate the amplitude of the ground motion as in the subshear case. (Aaagard and Heaton (004) use a inematic source model with constant subshear and supershear rupture velocities combined with finite element wave propagation to show that the pattern of observed ground motion changes when going to higher rupture velocities. Bernard and Baumont (005) have also investigated the effect of constant supershear rupture on ground motion.

The classic effect of a subshear rupture is to increase the amplitude of the ground motion in the direction that the rupture propagates, i.e., directivity. This has a pronounced effect on the amplitude of the ground velocity near the fault (Archuleta and Hartzell, 98; Archuleta, 984; Hall et al., 995). It is less clear how the ground motion will be affected when the rupture is on average supershear but variable. We have begun to investigate this problem using the simulation method outlined above. In Figure 4 we show three examples of the pattern of the surface ground velocity where the rupture has a supershear velocity. In these cases we have used taen the velocity from a uniform distribution between.5-.7 x Vs where Vs is the shear wave speed of the medium and we have considered a two values of correlation, 0. and 0.8, between the rupture velocity and the slip. Figure 4. The pea ground velocity is contoured at the Earth s surface from rupture on a vertical strie slip fault. The epicenter is the solid blac dot and the surface trace is the blac line. There are three slip models (M, M and M3). The correlation is 0. for the left set of plots and 0.8 for the right set. The rupture velocity is taen from a uniform distribution [.5,.7] x Vs. While model M has large amplitudes in the forward direction, that is not the case for M and M3. Moreover, the pea velocity extends much farther from the fault, a result of the planar mach wave front generated by the supershear rupture. The pattern of pea ground velocity (PGV) is quite different from subshear ruptures. The large amplitudes extend over a greater area far from the fault and are not only in the forward direction of the rupture, e.g., note model M3. Thus in cases where supershear ruptures are inferred for past earthquaes, e.g., 979 Imperial Valley, California (Archuleta, 984), 999 Izmit, Turey (Bouchon et al., 000), 999 Dücze, Turey (Bouchon et al, 00), 00 Denali, Alasa, earthquae (Dunham and Archuleta, 004; Ellsworth et al., 004) and the 00 Kunlun, Tibet (Bouchon and Vallée, one might expect stronger ground motion away from the fault than predicted by subshear ruptures.

AKNOWLEDGEMENTS This wor was supported, in part, by the National Science Foundation under grant EAR-0464 (SCEC Community Modeling Environment Project). The research was funded by the USGS Grant under Contract No. 04HQGR0059 and by the Southern California Earthquae Center. SCEC is funded by NSF cooperative Agreement EAR-00694 and USGS cooperative Agreement 0HQAG0008. REFERENCES Aagaard, B. T., and T. H. Heaton, (004). Near-source ground motions from simulations of sustained itersonic and supersonic fault ruptures, Bull. Seism. Soc. Am., 94, 6, 064-078. Abrahamson, N., P. Somerville, and A. Cornell (990). Uncertainty in numerical strong motion predictions, in Proc. Of the Fourth U.S. National Conference on Earthquae Engineering, Vol., 407-46. Andrews, D. J. (976). Rupture propagation with finite stress in antiplane strain, J. Geophys. Res. 8, 3575-358. Archuleta, R. J. (984). A faulting model for the 979 Imperial Valley earthquae, J. Geophys. Res., 89, 4559-4585. Archuleta, R. J., and S. H. Hartzell, (98). Effects of fault finiteness on near-source ground motion, Bull. Seism. Soc. Am., 7, 939-957. Bernard, P., and D. Baumont, (005). Shear mach wave characterization from inematic fault rupture models with constant rupture velocity, Geophys. J. Int., 6, 43-447 Bonilla, L., D. Lavallée, and R. Archuleta (998). Nonlinear site response: Laboratory modeling as a constraint for modeling accelerograms, in Proc. The Effects of Surface Geology on Seismic Motion, Yoohama, Japan,, 793-800. Bouchon, M., M. N. Tosöz, H. Karabulut, M. P. Bouin, M. Dietrich, M. Aatar and M. Edie, (000). Seismic imaging of the Izmit rupture inferred from near-fault recordings, Geophys. Res. Lett., 7, 303-306. Bouchon, M., M. P. Bouin, H. Karabulut, M. N. Tosöz, M. Dietrich, A. J. Rosais, (00). How fast is rupture during an earthquae? New insights from the 999 Turey earthquaes, Geophys. Res. Lett., 8, 73-76. Bouchon, M. and M. Vallée (003). Observation of long supershear rupture during the Magnitude 8. Kunlunshan earthquae, Science, 30, 84-86. Brune, J. N. (970). Tectonic stress and the spectra of seismic shear waves from earthquaes, J. Geophys. Res., 76, 500. Cario, M.C. and B.L. Nelson (997), Modeling and generation random vectors with arbitrary marginal distributions and correlation matrix. Tech Rep., Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Ill. Day, S. M. (98). Three-dimensional simulation of spontaneous rupture: the effect of non-uniform prestress, Bull. Seism. Soc. Am., 7, 88-90. Dunham, E.M., and R. J. Archuleta, (004). Evidence for a supershear transient during the 00 Denali Fault earthquae, Bull. Seism. Soc. Am., 94, S56-S68. Dunham, E.M., and R. J. Archuleta, (005). Near-source ground motion from steady state dynamic rupture pulses, Geophys. Res. Lett., 3. Ellsworth, W. L., M. Celebi, J. R. Evans, E. G. Jensen, D. J. Nyman and P. Spudich (004). Processing and modeling of the pump station 0 record from the November 3, 00, Denali fault, Alasa earthquae, in Proc. th Int. Conf. Soil Dynam. Earthq. Eng., Bereley, CA, 47-477. Guatteri, M., P. Mai, G. Beroza, and J. Boatwright (003). Strong ground-motion prediction from stochastic-dynamic source models, Bull. Seism. Soc. Am., 93, 30-33. Hall, J., T. Heaton, M. Halling, and D. Wald (995). Near-source ground motion and its effects on flexible buildings, Earthquae Spectra,, 569-605. Hartzell, S., L. F. Bonilla, and R. A. Williams (004) Prediction of nonlinear soil effects, Bull. Seism. Soc. Am., 94, 609-69.

Lavallée, D. and R. Archuleta (003). Stochastic modeling of slip spatial complexities for the 979 Imperial Valley, California, earthquae, Geophys. Res. Lett., 30, 45, doi:0.09/00gl05839. Liu, P., R. J. Archuleta and S. H. Hartzell (006), Prediction of broadband ground motion time histories: Hybrid low/high-frequency method with correlated random source parameters, Bull. Seism. Soc. Am. 96, in press. Mai, P. M., and G. C. Beroza (00). A spatial random field model to characterize complexity in earthquae slip, J. Geophys. Res. 07, -. Pitara, A., P. Somerville, Y. Fuushima, T. Uetae, and K. Iriura (000). Simulation of near-fault ground-motion using hybrid Green s functions, Bull. Seism. Soc. Am., 90, 566-586. Somerville, P., K. Iriura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasai, T. Kagawa, N. Smith, and A. Kowada (999). Characterizing crustal earthquae slip models for the prediction of strong motion, Seism. Res. Lett., 70, 59-80. Schneider, J., W. Silva, and C. Star (993). Ground motion model for the 989 M 6.9 Loma Prieta earthquae including effects of source, path, and site, Earthquae Spectra, 9, 5-87. Zhu, L. and L. Rivera (00). Computation of dynamic and static displacement from a point source in multi-layered media, Geophys. J Int., 48, 69-67.