OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

Similar documents
FEEDBACK, STABILITY and OSCILLATORS

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

Electronic Circuits Summary

à 10. DC (DIRECT-COUPLED) AMPLIFIERS

Homework Assignment 08

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

OPAMPs I: The Ideal Case

à FIELD EFFECT TRANSISTORS

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

ECEN 325 Electronics

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

D is the voltage difference = (V + - V - ).

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Bipolar Junction Transistor (BJT) - Introduction

ESE319 Introduction to Microelectronics. Output Stages

Operational amplifiers (Op amps)

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Lecture 4: Feedback and Op-Amps

EE100Su08 Lecture #9 (July 16 th 2008)

Chapter 13 Small-Signal Modeling and Linear Amplification

Frequency Dependent Aspects of Op-amps

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Circle the one best answer for each question. Five points per question.

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

OPERATIONAL AMPLIFIER APPLICATIONS

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

ESE319 Introduction to Microelectronics. Feedback Basics

Operational Amplifiers

ESE319 Introduction to Microelectronics. Feedback Basics

55:041 Electronic Circuits The University of Iowa Fall Final Exam

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Homework Assignment 09

PHYS225 Lecture 9. Electronic Circuits

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECEN 326 Electronic Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

S.E. Sem. III [ETRX] Electronic Circuits and Design I

Operational amplifiers (Op amps)

ECEE 352 Analog Electronics. DC Power Supply Winter 2016

0 t < 0 1 t 1. u(t) =

ECE 546 Lecture 11 MOS Amplifiers

Half-circuit incremental analysis techniques

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design

EE40 Midterm Review Prof. Nathan Cheung

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Advanced Current Mirrors and Opamps

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Systematic Design of Operational Amplifiers

At point G V = = = = = = RB B B. IN RB f

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Stability and Frequency Compensation

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Design of Analog Integrated Circuits

Industrial Technology: Electronic Technology Crosswalk to AZ Math Standards

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Sample-and-Holds David Johns and Ken Martin University of Toronto

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

ECE315 / ECE515 Lecture 11 Date:

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Switched Capacitor: Sampled Data Systems

Chapter 10 Instructor Notes

FEATURES FUNCTIONAL BLOCK DIAGRAM

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

ECE3050 Assignment 7

Homework 6 Solutions and Rubric

E40M Review - Part 1

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Time Varying Circuit Analysis

Bipolar junction transistors

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Print Name : ID : ECE Test #1 9/22/2016

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

or Op Amps for short

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Vidyalankar S.E. Sem. III [INFT] Analog and Digital Circuits Prelim Question Paper Solution

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

Chapter 5. BJT AC Analysis

Chapter 2. - DC Biasing - BJTs

JFET CAPACITANCE CALCULATIONS

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Guest Lectures for Dr. MacFarlane s EE3350

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

ECE-305: Fall 2017 MOS Capacitors and Transistors

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Transcription:

à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Non-inverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier IDEAL OP-AMP REAL OP-AMP A VO, Gain (Differential) 10 4-10 6 R id 10 5-10 6 Bipolar input >> 10 6 MOS or JFET input R out 0 10 0-10 3 C.M.R.R. 90-120 db Bandwidth 100 Hz. Univ. of Southern Maine 1 Prof. M.G. Guvench

GBW HGain - Bandwidth ProductL 1 MHz - 100 MHz Offsets 0 (none) Finite Univ. of Southern Maine 2 Prof. M.G. Guvench

I BQ1 and I BQ2 I input bias >» I BQ1» >» I BQ2» Input Offset Current I OS = HI BQ1 - I BQ2 L Real Operational - Amplifiers V OS = V OS HTL, I OS = I OS HTL, A VO = A VO HTL Temperature Coefficient of Input Offset Voltage i.e. H KL dv OS ÄÄ dt > V OS ÄÄÄÄ T where T is absolute temperature, V OS d 5 mv (Bipolar) 1-25 mv (FET), expensive HI OS, I BIAS ) d 1 ma (Bipolar) ~ pa -na (JFET) ~ pa (MOSFET) à OPERATIONAL AMPLIFIER CIRCUITS (APPLICATIONS) In the following analyses, unless mentioned otherwise, the operational amplifiers are treated as if they are "ideal" or near ideal. Univ. of Southern Maine 3 Prof. M.G. Guvench

ü I / V (CURRENT / VOLTAGE) CONVERTER J I Bias + I Bias - N 0 V OS 0 Ideal Operational Amplifier If A VO ô v OUT = A VO Hv + - v - L Hv + - v - L = v OUT ÄÄÄÄÄÄÄ A VO ô0 v + 0 î v - = 0 HVirtual GroundL For v - = 0 H v - L - Hv OUT L = R.i R = R.i IN ô v OUT =-R.i IN Therefore, this current-voltage converter circuit behaves just like a "Current-Controlled-Voltage-Source" with zero input resistance. (see Figure below) Univ. of Southern Maine 4 Prof. M.G. Guvench

ü INVERTING AMPLIFIER Since v - = 0 Hvirtual groundl i IN = i 1 = v 1 - Hv - L = v 1 Therefore i IN = v 1 flows into the I - V converter which creates v OUT =-R F.i IN, resulting in v OUT = -R F ÄÄÄÄÄÄ v 1 or, A vo = - R F R OUT = 0 R IN = v 1 ÄÄÄÄÄÄÄ = v 1 = for the "inverting" amplifier. i 1 i IN Univ. of Southern Maine 5 Prof. M.G. Guvench

ü THE SUMMING AMPLIFIER Univ. of Southern Maine 6 Prof. M.G. Guvench

Since v - = 0 Hvirtual groundl i 1 = v 1-0 ÄÄ = v 1 i 2 = v 2-0 ÄÄ R 2 = v 2 ÄÄÄ R 2................................... i N = v N - 0 ÄÄÄ = v N ÄÄ R N R N N i IN = i i i=1 and v OUT =-R F.i IN v OUT = - R F.v 1 - R F.v 2 -...... - R F ÄÄ R 2 R N.v N v OUT = -Ha 1 v 1 + a 2 v 2 +......+a N v N L where a i = - R F R i Comment: (1) This is equivalent to, mathematically, a weighted sum of inputs or simply an addition operation except for the (-) signs. (2) To change the sign of the coefficient of an element of the sum simply employ a unity gain inverting amplifier at its input. v OUT = - R ÅÅÅÅÅ R v IN =-v IN Univ. of Southern Maine 7 Prof. M.G. Guvench

ü THE NON-INVERTING AMPLIFIER A vo >> 1 v + = v 1 v - = ÄÄÄÄÄ.v OUT + R F v + - v - = v OUT ÄÄÄÄÄÄÄ A vo ª 0 î v + = v - Therefore, v 1 = ÄÄÄÄÄ.v OUT î v OUT = i j R F + 1 y z.v 1 or A v = i j R F + 1 y z + R F k { k { From the resulting equation observe that: 1. The voltage gain is +I R F ÅÅÅÅÅÅ + 1M positive. R 2. If ÅÅÅÅÅÅ F ö 0 ( R F ö0 (short), ö (open) ) then the gain becomes (+1), i.e. unity gain (absolute unity). v OUT = v 1 UnityGainBuffer Amplifier 3. Since operational amplifier does not draw any current i + º 0 ï R IN > Univ. of Southern Maine 8 Prof. M.G. Guvench

ü Effect of Finite A VO on Feedback Amplifier Gain BETA ª b is a transfer relationship. In general b =b (jw) For finite A VO, v OUT = A vo Hv + - v - L, v + = v 1, v - =b.v OUT v OUT = A vo H v 1 -b.v OUT L î H1 +ba vo L v OUT = A vo.v 1 î v OUT ÄÄÄÄÄÄÄ v 1 = A vo ÄÄÄÄÄÄ H1 +ba vo L î v OUT = 1 ÄÄÄÄÄ b ÄÄ 1 + ÄÄÄÄÄ 1 b.a vo v 1 Therefore, as long as b.a vo >> 1 v OUT > 1 ÄÄÄÄÄ b v 1 Example: Univ. of Southern Maine 9 Prof. M.G. Guvench

Special Case : v OUT = 1 v 1 = i j1 + R F y z v 1 R 1 k { R F + β= Vout Vin = R F + Non inverting amplifier ü FREQUENCY RESPONSE OF REAL OPERATIONAL AMPLIFIERS Internally Frequency Compensated Op.Amp. (One pole / capacitor dominates) A vo HjwL > A vo H0L ÄÄÄÄÄÄÄ w 1 + j ÄÄÄÄÄÄÄ w 0 A vo HjwL w<<w0 > A vo H0L A vo HjwL w>>w0 > A vo H0L ÄÄ w j ÄÄÄÄÄÄÄ w 0 = A vo H0L.w 0 ÄÄÄ jw = GBW Ä jw Note that when at unity gain frequency A vo Hjw 1 L > 1 and w=w 1 = GBW Notes/Definitions: Unity Gain Frequency = Gain Bandwidth Product (if single pole, -20dB/dec) Unity Gain Frequency GBW (if not -20dB/dec) Definitions: A vo The Open Loop Gain (unloaded, no feedback) BETA ª b The Feedback Ratio b A vo The Closed Loop Gain Univ. of Southern Maine 10 Prof. M.G. Guvench

ü Non-Inverting Amplifier's Gain BandWidth Product In the feedback amplifier utilizing this "Real Operational Amplifier" 1 V out HjwL = ÄÄ b HjwL. 1 Ä.V 1 HjwL 1 1 + ÄÄÄÄÄÄ b HjwL.A vo HjwL For the non - inverting amplifier b HjwL = ÄÄÄÄÄ = constant + R F V out ÄÄÄÄ = ÄÄÄÄÄ 1 V 1 b. 1 ÄÄ 1 1 + ÄÄ A vo H0L w 1+j Ä w 0 b. ÄÄÄÄÄÄÄ = 1 ÄÄÄÄÄ b. 1 ÄÄ 1 + 1+j ÄÄÄÄÄÄÄ w w ÄÄ 0 b.a vo H0L = 1 ÄÄÄÄÄ b. 1 ÄÄÄÄÄ Ä 1 I1 + ÄÄ b.a vo H0L M + jw b.w 0 A vo H0L For GBW =w 0.A vo H0L and, as long as b.a vo H0L >>> 1 V out ÄÄÄÄ = ÄÄÄÄÄ 1 V 1 b. 1 ÄÄÄÄ 1 + ÄÄÄÄÄÄÄ jw i j GBW ÄÄÄÄÄÄ y 1 z ÄÄÄÄ k b { 1 ÄÄÄÄÄ b = ÄÄÄ w 1 + j I ÄÄÄÄÄ where Hw -3 db L of the feedback amp = GBW ÄÄÄÄÄÄ ÄÄÄÄÄ I 1 b M w -3 db M and i j 1 y ÄÄÄÄÄ z is low frequency gain of the feedback amplifier k b { HGain. Bandwidth L feedback amplifier = HGBWL operational amplifier Univ. of Southern Maine 11 Prof. M.G. Guvench

à FREQUENCY RESPONSE OF AN OPAMP AMPLIFIER WITH FREQUENCY DEPENDENT FEEDBACK Definitions: A vo The Open Loop Gain (of the opamp, unloaded, no feedback) BETA ª b The Feedback Ratio b A vo The Closed Loop Gain A v The Feedback Gain (of the overall amplifier) What if A vo =A vo (jw) and b(jw) the frequency response of the operational amplifier is more complicated? Answer: As long as b A vo >>> 1 the response will be 1/b(jw) as shown with the example below. Univ. of Southern Maine 12 Prof. M.G. Guvench

à THE DIFFERENCE AMPLIFIER Univ. of Southern Maine 13 Prof. M.G. Guvench

Univ. of Southern Maine 14 Prof. M.G. Guvench

Use the idea of superposition for 1 & 2 : 1. v 1 0 v 2 π 0 v OUT =- R F.v 2 2. v 1 π 0 v 2 0 v 1 ' = R B.v 1 R A + R B R B v OUT = i j R F + 1 y z v ' 1 = i j R F + 1 y z.v 1 k { k { R A + R B v OUT =- R F v 2 + i j R F + 1 y R B ê R A z ÄÄÄÄÄ k { HR B ê R A + 1L.v 1 If R B ÄÄ R A = R F v OUT = R F Hv 1 - v 2 L Pure Differential Response -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- A Different Approach : HA v L Op.Amp ô î v + > v - v + = R B v 1 v - = R A + R B R F ÄÄÄÄÄ v 2 + ÄÄÄÄÄ v OUT + R F + R F R B v 1 > R A + R B R F ÄÄÄÄÄ v 2 + ÄÄÄÄÄ v OUT + R F + R F v OUT = i j + R F y ÄÄÄÄÄ z i y j v 1 - ÄÄÄÄÄ v 2 z k { k R A + R B + R F { R B R F If R B = R F and R A = î R B ÄÄ R A = R F Then v OUT = + R F i y ÄÄÄÄÄ j ÄÄÄÄÄ v 1 - ÄÄÄÄÄ v 2 z k + R F + R F { R F R F v OUT = R F Hv 1 - v 2 L Choose R B = R F and R A = to make the resistances ( R A êê R B ) and ( êê R F ) equal so that equal I B+ and I B- bias currents (i.e. zero I OS ) create balanced shifts in v + and v -. Otherwise, the difference will get amplified and result in a large offset at the output. Univ. of Southern Maine 15 Prof. M.G. Guvench

à LOGARITHMIC AMPLIFERS L og Amplifier for v 1 > 0 If v - is virtual ground then i 1 > v 1 - v - ÄÄÄÄ î i 1 > v 1 i 1 = i C = I S e vbe ÄÄÄÄÄÄ kt ê q for v BE =-v OUT i 1 = v 1 = i C = I S e -vout Ä kt ê q Then for v 1 > 0 output becomes v OUT =- HkTL ÄÄÄÄÄ q v 1 ln i y j ÄÄÄÄÄÄÄ z < 0 k.i S { Lo g Amplifier for v 1 < 0 Univ. of Southern Maine 16 Prof. M.G. Guvench

For v 1 < 0 v BE = v OUT i C = I S e vbe ktääääää ê q ÄÄÄÄ = IS e v OUT kt ê q i 1 =-i C Then v OUT =+ HkTL ÄÄÄÄÄ q ln i j -v 1 y ÄÄÄÄÄÄÄ z > 0 k.i S { à ANTI-LOGARITHMIC AMPLIFIERS v 1 > 0 ÄÄÄÄ i C = I S e +veb kt ê q ÄÄÄÄ v OUT =-R F.i C =-R F.I S e +veb kt ê q ÄÄÄÄ For v EB = v 1 v OUT =-R F.I S e + v 1 kt ê q works for v 1 > 0 Univ. of Southern Maine 17 Prof. M.G. Guvench

Anti Log Amplifier for v 1 < 0 ÄÄÄÄ v OUT =+R F.I S e - -v 1 kt ê q Hworks if v 1 < 0L ü Applications of Log / Anti-Log Amplifiers: Log HA * BL = Log A + Log B Log HA ê BL = Log A - Log B e a Log A + b Log B = e a Log A.e b Log B = A a.b b Therefore, all of the following mathematical functions, multiplication, division, logarithms, exponentiation, power including roots can be implemented using the circuit shown above. Univ. of Southern Maine 18 Prof. M.G. Guvench

à DIFFERENTIATING AMPLIFER (The OpAmp Differentiator) Since v - ô0 Hvirtual groundl then, v OUT =-R.i R + v - ô v OUT =-R.i R i C = C. dv dt = C. d Hv 1 - v - L ÄÄÄÄ dt ô i C = C. dv 1 ÄÄÄ dt v OUT =-RC. dv 1 ÄÄÄ dt To change the sign use unity gain inverter at the input (or the output). Frequency Response: Univ. of Southern Maine 19 Prof. M.G. Guvench

v OUT H+L =-RC ÄÄÄÄÄÄÄ d dt v 1 HtL in H s or jw domainl ô V OUT HsL =-RC ÄÄÄÄÄÄÄ d dt V 1 e st V OUT HsL =-src.v 1 e st V 1 e st = V 1 HsL ô V OUT HsL =-src.v 1 HsL V OUT HjwL =-jw RC.V 1 HjwL î H HjwL =-j i w y j ÄÄ z k 1 ê RC { à INTEGRATING AMPLIFIER (The OpAmp Integrator) For v - = virtual ground and i R = i C i R = v 1 - v - ÄÄÄÄ R = v 1 ÄÄÄÄÄÄÄ R and i C = C ÄÄÄÄÄÄÄ d dt Hv - - v OUT L =-C dv OUT ÄÄÄ dt v 1 ÄÄÄÄÄÄÄ R =-C dv OUT ÄÄÄ dt î v OUT =-ÄÄÄÄ 1 t R C v - Ht'L t' + v OUT H0L 0 By introducing a switch the initial value, v OUT H0L set at zero. Univ. of Southern Maine 20 Prof. M.G. Guvench

The switch, S keeps shorting the terminals of the capacitor for t < 0. When it opens at t = 0 the capacitor's initial voltage is set to be zero. Frequency Response: V OUT HsL =- 1 ÄÄÄÄÄÄÄ src.v 1 HsL V HjwL =- 1 ÄÄ jw R C V 1 HjwL Univ. of Southern Maine 21 Prof. M.G. Guvench

à POWER OPERATIONAL AMPLIFIERS Complementary pairª Q 1 and Q 2 have similar V BE - I C chs. and identical b's but one is NPN, the other is PNP. I OUT = Hb +1L.I OA HI OUT L MAX Hb +1L.HI OA L MAX HI OA L MAX ~ 10 ma then HI OUT L MAX ~ 1A For higher currents you need to use a Darlington transistor. Complementary Emitter Follower Chs. Univ. of Southern Maine 22 Prof. M.G. Guvench

Note that Darlington outputs will have more crossover distortion because of doubling of VBE drops. Effect of Negative Feedback on Cross-Over Distortion If A VO of Op Amp. is very high v + = v - v 1 = ÄÄÄÄÄ.v OUT ô v OUT = i j1 + R F y z.v 1 + R F k { Note that the voltage v 1 will need to be ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 0.7 V A VO ~ 7 mv to bring the output out of the cross-over distortion. With an output swing of 10 V, Gain ~ 100 input swing is ÅÅÅÅÅÅÅÅÅÅ 10 100 ~ 0.1 V. 7 mv Therefore the ratio of (input referred cross - over voltage ê peak voltage) ~ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ~ 0.00007, which is very small 100 000 mv fraction. Univ. of Southern Maine 23 Prof. M.G. Guvench

POWER AND OUTPUT RANGE LIMITATIONS 1. I OA I OAMAX ~ 10 ma, I L I LMAX = I OUTMAX > Hb +1L.I OAMAX 2. Typically, V OA V OAMAX, V OAMAX > V CC - 1V V LMAX V OAMAX - V BE1 3. P DQ1 = I L HV CC - V L L for the worst case : V L > 0 P DMAXQ1 I LMAX.V CC For a resistive load: V L = R L.I L P Q = V L.V CC - V 2 L ÄÄÄÄ R L R L Transistor Power Dissipation L V L HV CC V L Lvs. DC Load Voltage For non-resistive loads and for AC waveforms the transistor's power dissipation versus load voltage will be different depending on the waveforms and the phase between voltage and current. Univ. of Southern Maine 24 Prof. M.G. Guvench

à OPAMP DC-VOLTAGE REGULATOR ü Simple Zener Diode Regulator (Review) Disadvadvantages to overcome: 1. Fixed output voltage, 2. It cannot handle large I L because it needs high P DMAX zeners, 3. Output voltage varies because of finite r Z ~ 1-10 W, 4. Output resistance º r Z, cannot be smaller, 5. Ripple reduction H r Z R o +r Z L requires higher values of R O, which increases the DC voltage drop across R O, and the power wasted on it. Univ. of Southern Maine 25 Prof. M.G. Guvench

ü OPAMP DC-VOLTAGE REGULATOR WITH ADJUSTABLE OUTPUT v + > v - k 1 V Z = k 2 V L ô V L = k 1 k 2.V Z where 0 k 1 1 k 2 = ÄÄÄÄÄ + R F Power is supplied by V CC. To make V UR the source that supplies power to R L simply eliminate V CC use V UR for it. Limitations : I LMAX < Hb +1L I OAMAX and V LMAX < V URMIN - V BE1 - V O.A.DROP For V CC = V URMAX Q 1 has to be able to handle P DMAX > I LMAX HV URMAX - V LMIN L Univ. of Southern Maine 26 Prof. M.G. Guvench

ü OPAMP DC-VOLTAGE REGULATOR WITH ADJUSTABLE OUTPUT AND CURRENT LIMIT Current limit is turned on when I RCL.R CL > V BE ON Q2 ª 0.7 V I RCL = I L + I ÑÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ FEEDBACK ÖÖÖÖÖÖÖÜ î I LMAX.R CL > 0.7 V small Comment : Design of zener diode regulator is much simpler since its load is a constant (does not vary) and is also a high resistance load (does not need high current to operate). à PRECISION RECTIFIERS Input : v IN HtL Output : v OUT HtL = 9 Kv IN HtL for v IN > 0 0 for v IN < 0 Variations : HAL Responds to : Hthe case abovel v IN > 0 and either inverts HA1L or does not invert HA2L HBL Responds to : v IN < 0 and either inverts HB1L or does not invert HB2L Univ. of Southern Maine 27 Prof. M.G. Guvench

Circuit (A1) Analysis of Precision Rectifier Circuit (A1) : Precision Rectifier When v IN > 0 v OUT = Hv - L - i IN.R 2, i IN = v IN - Hv - L ÄÄÄ and Hv - L ô0 v OUT =- R 2.v IN When v IN < 0 v OUT = Hv - L - i R2.R 2 = 0 for Hv - L ô0 and i R2 = 0 v OUT = 9 - R 2 ÄÄÄÄÄÄ v R IN 1 if v IN > 0 0 if v IN < 0 Therefore, "Precision Half-Wave Rectifier Circuit (A1)" given above responds to positive v in. It creates an output waveform which is the rectified positive half of v in, amplified and inverted. (B1) Analysis of Precision Rectifier Circuit (B1) Precision Rectifier Circuit Univ. of Southern Maine 28 Prof. M.G. Guvench

Reversing the diodes makes the circuit HA1L respond to the signal with opposite polarities. From above, v OUT = 9 - R 2 ÄÄÄÄÄÄ v R IN 1 if v IN < 0 0 if v IN > 0 Therefore, "Precision Half-Wave Rectifier Circuit (B1)" given above responds to negative v in. It creates an output waveform which is the rectified negative half of v in, amplified and inverted. Comment: The other versions of the precision rectifier can be implemented by employing inverting, and summing amplifers in combination with the circuits A1 and B1 discussed above. Homework: Design a "Precision Full-Wave Rectifier" which will output the signal full-wave rectified, all positive, and amplified 10 times. Univ. of Southern Maine 29 Prof. M.G. Guvench