CHAPTER 6d. NUMERICAL INTERPOLATION

Similar documents
CHAPTER 6c. NUMERICAL INTERPOLATION

Numerical Integration Formulas

Topic 9 - Taylor and MacLaurin Series

Solving third order boundary value problem with fifth order block method

CS321. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing

The Method of Least Squares. To understand least squares fitting of data.

A NUMERICAL METHOD OF SOLVING CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS BASED ON A LINEAR APPROXIMATION

Modification of Weerakoon-Fernando s Method with Fourth-Order of Convergence for Solving Nonlinear Equation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

Taylor Polynomials and Approximations - Classwork

CHAPTER 5. Theory and Solution Using Matrix Techniques

Eigenvalues and Eigenvectors

Math 155 (Lecture 3)

g () n = g () n () f, f n = f () n () x ( n =1,2,3, ) j 1 + j 2 + +nj n = n +2j j n = r & j 1 j 1, j 2, j 3, j 4 = ( 4, 0, 0, 0) f 4 f 3 3!

Maclaurin and Taylor series

Solving Third Order Boundary Value Problem Using. Fourth Order Block Method

Axioms of Measure Theory

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

x x x 2x x N ( ) p NUMERICAL METHODS UNIT-I-SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS By Newton-Raphson formula

μ are complex parameters. Other

Complex Numbers Solutions

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

Zeros of Polynomials

Phys. 201 Mathematical Physics 1 Dr. Nidal M. Ershaidat Doc. 12

This chapter describes different methods to discretize the diffusion equation. f z 2 = 0. y ) x f

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway?

Mathematical Expressions for Estimation of Errors in the Formulas which are used to obtaining intermediate values of Biological Activity in QSAR

TAYLOR AND MACLAURIN SERIES

Chapter 9: Numerical Differentiation

SHAFTS: STATICALLY INDETERMINATE SHAFTS

Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

Hyperbolic Heat Equation in Bar and Finite Difference Schemes of Exact Spectrum

CALCULATION OF FIBONACCI VECTORS

Chapter 2: Numerical Methods

The Discrete-Time Fourier Transform (DTFT)

MATH 31B: MIDTERM 2 REVIEW

MAXIMALLY FLAT FIR FILTERS

Lakireddy Bali Reddy College of Engineering, Mylavaram (Autonomous)

MAT1026 Calculus II Basic Convergence Tests for Series

AE/ME 339 Computational Fluid Dynamics (CFD)

FIR Filter Design: Part I

(bilinearity), a(u, v) M u V v V (continuity), a(v, v) m v 2 V (coercivity).

STAT 516 Answers Homework 6 April 2, 2008 Solutions by Mark Daniel Ward PROBLEMS

Linear Regression Demystified

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

A widely used display of protein shapes is based on the coordinates of the alpha carbons - - C α

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

CALCULATING FIBONACCI VECTORS

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

ON POINTWISE BINOMIAL APPROXIMATION

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Enumerative & Asymptotic Combinatorics

SNAP Centre Workshop. Basic Algebraic Manipulation

B U Department of Mathematics Math 101 Calculus I

THE KALMAN FILTER RAUL ROJAS

1 Generating functions for balls in boxes

NUMERICAL METHODS FOR SOLVING EQUATIONS

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

Math 475, Problem Set #12: Answers

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

PRELIMINARY MATHEMATICS LECTURE 5

Week 5-6: The Binomial Coefficients

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

Interpolation. 1. What is interpolation?

*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully

Castiel, Supernatural, Season 6, Episode 18

Euler-MacLaurin using the ZETA-matrix

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

A New Solution Method for the Finite-Horizon Discrete-Time EOQ Problem

An Improved Self-Starting Implicit Hybrid Method

ln(i G ) 26.1 Review 26.2 Statistics of multiple breakdowns M Rows HBD SBD N Atoms Time

Stochastic Matrices in a Finite Field

arxiv: v1 [math.fa] 3 Apr 2016

Simple Polygons of Maximum Perimeter Contained in a Unit Disk

REGRESSION WITH QUADRATIC LOSS

Modern Algebra 1 Section 1 Assignment 1. Solution: We have to show that if you knock down any one domino, then it knocks down the one behind it.

Section 5.1 The Basics of Counting

Power Series Expansions of Binomials

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems. x y

CS 171 Lecture Outline October 09, 2008

Appendix F: Complex Numbers

Engineering Analysis ( & ) Lec(7) CH 2 Higher Order Linear ODEs

Symmetric Matrices and Quadratic Forms

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

Chapter 4. Fourier Series

TIME-PERIODIC SOLUTIONS OF A PROBLEM OF PHASE TRANSITIONS

5. Fast NLMS-OCF Algorithm

x 2 x x x x x + x x +2 x

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

2.004 Dynamics and Control II Spring 2008

1 6 = 1 6 = + Factorials and Euler s Gamma function

Transcription:

CHAPER 6d. NUMERICAL INERPOLAION A. J. Clark School o Egieerig Departmet o Civil ad Evirometal Egieerig by Dr. Ibrahim A. Assakka Sprig ENCE - Computatio Methods i Civil Egieerig II Departmet o Civil ad Evirometal Egieerig Uiversity o Marylad, College Park Fiite Dierece Iterpolatio Example 4 Repeat Example usig a iite dierece table x (x) 5 8 x ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 99

Fiite-dierece able x x (x) (x) (x) x + x (x + x) (x) (x + x) x + x (x + x) (x + x) (x + x) x + x (x + x) (x + x) (x + x) (x + x) : : : : x +( -)x [x +( -)x] [x +( -)x] [x +( -)x] x +( -)x [x +( -)x] [x +( -)x] [x +( -)x] (x) (x + x) (x + x) : [x +( -)x] ::: (x) x + x (x + x) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Example 4 (cot d): x (x) 5 8 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No.

Fiite Dierece Iterpolatio First ad Secod Fiite Dierece he a quadratic polyomial o the orm () x bx + b x + b () he irst ad secod iite dierece are give as ad ( + b x) ( x) x + b ( x) b ( ) b x (8) (7) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Example 4 (cot d): Equatio 8 gives b ( x) (). 5 b b Equatio 7 gives b b b ( x) x + b ( x) + b ()() + b () + (.5)().5 ( x) [ ] ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No.

Fiite Dierece Iterpolatio Example 4 (cot d): Equatio gives () x b x.5 + b x + b () +.5() b Hece, the quadratic polyomial is + b () x.5x +.5x + ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Fiite Dierece Iterpolatio Example 4 (cot d): hereore, (.7) ca be estimated as (.7).5(.7) +.5(.7) + 6. 995 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 5 4

Fiite Dierece Iterpolatio Newto s Method Newto s method is a coveiet algorithm to id a th-order iterpolatio uctio with the use o a iite-dierece table developed or a give set o data poits. Reerrig to geeral orm o the iitedierece table, it ca be show that the irst diagoal row are give by ( x + x) () x () x ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 6 Fiite-dierece able x x (x) (x) (x) x + x (x + x) (x) (x + x) x + x (x + x) (x + x) (x + x) x + x (x + x) (x + x) (x + x) (x + x) : : : : x +( -)x [x +( -)x] [x +( -)x] [x +( -)x] x +( -)x [x +( -)x] [x +( -)x] [x +( -)x] (x) (x + x) (x + x) : [x +( -)x] ::: (x) x + x (x + x) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7 5

Fiite Dierece Iterpolatio Newto s Method From the iite-dierece table, i the irst diagoal, we otice the ollowig: () x ( x + x) () x () x ( x + x) () x () () x ( x + x) () x M () x ( x + x) () x ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8 Fiite Dierece Iterpolatio Newto s Method Equatio ca be rearrage to give ( x + x) ( x) + ( x) ( x + x) ( x) + ( x) ( x + x) () x + () x ( x + x) ( x) + ( x) M () ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 9 6

Fiite Dierece Iterpolatio Newto s Method he same procedure could be used or ay diagoal row. For example, the equatios or the ext diagoal row are ( x + x) () x + () x + () x ( x + x) () x + () x + () x 4 ( x + x) () x + () x + () x M ( x + x) () x + () x + () x () ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Newto s Method All these expasios have the orm o biomial expasio; thus they ca be rewritte as i ( x + mx) bi ( x) m i ( x + mx) ( x) + m ( x) ( ) m m + m () x + L+ () x (4) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7

Fiite Dierece Iterpolatio Newto s Method I geeral r r r+ ` ( x + mx) bi ( x) m i r r + r + m ( x + mx) () x + m () x + L+ () x (5) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Newto s Iterpolatio Formula Previous equatio ives the ollowig ormula: ( x) ( x ) + ( x ) + + ( ) ( ) L( m + ) m!! ( x ) m + L ( x ) (6) i which x x x (7) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8

Fiite Dierece Iterpolatio Example 5 Repeat example 4 usig Newto s ormula. x (x) 5 8 x ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Fiite Dierece Iterpolatio Example 5 (cot d): he ollowig iite-dierece table ca be costructed: x (x) 5 8 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 5 9

Fiite Dierece Iterpolatio Example 5 (cot d): he Newto s ormula i this case will be writte as ( ) ( ) ( ) ( ) x x + x + ( x ) (8) where the ollowig values ca be obtaied rom the iite-dierece table: x! (), (), ad (), ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 6 Fiite Dierece Iterpolatio Example 5 (cot d): x ( x ) ( ) ( x ) ( ) ( x ) ( ) i x (x) 5 8 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7

Fiite Dierece Iterpolatio x Example 5 (cot d): hereore, Equatio 8 ca be expressed as () () ( ) x + + () (9) ( x ) ( ) ( x ) () ( x ) ( ) ( x) ( x ) + ( x ) + ( )! ( x ) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8 Fiite Dierece Iterpolatio Example 5 (cot d): Equatio 9 gives the quadratic iterpolatio uctio or this example: () x + + o estimate (.7), we eed to id rom Eq. 7 as ollows x x.7.7 x.7 () (.7 ) x + (.7) + 6.995 ENCE CHAPER 6d. NUMERICAL INERPOLAION ( ) Slide No. 9

Fiite Dierece Iterpolatio Example 6 τ Use the Newto s iterpolatio ormula to id the agle o twist ad the largest torque which may be applied to the ocircular brass bar as show. Assume τ 4 6 Pa, a.64 m, b.5 m, L m, ad G 77 9 Pa. max c ab L φ c ab G b a L τ max ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio he ollowig table gives the costat c ad c values τ max c ab L φ c ab G a/b.5..5. c..46.58.67. c.96.9.49.6. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No.

Fiite Dierece Iterpolatio We eed to id two iterpolatio uctios or c ad c usig Newto s ormula. his will require two iite-dierece tables or c ad c as ollows: τ max c ab L φ c ab G b a L τ max ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Fiite-dierece able or c a/b c c c c.5..5..5..46.58.67..9 -. -. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No.

Fiite Dierece Iterpolatio Fiite-dierece able or c a/b c c c c.5.96...5..9.49.6..4 -. -.6.7 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Fiite Dierece Iterpolatio For c ad c, the Newto s iterpolatio ormula o Eq. 6 gives ( x) ( x ) + ( x ) + ( )! ( x ) + ( )( )! ( x ) () ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 5 4

Fiite Dierece Iterpolatio Fidig the Largest orque: a b a b.64.5 x.56 x.5 a x.5.5 b x x.56.5. x.5 ENCE CHAPER 6d. NUMERICAL INERPOLAION b a L τ max Slide No. 6 Fiite Dierece Iterpolatio Fidig the Largest orque: From the iitedierece table or c a b a b a b a b ( x ) c (.5). ( x ) c (.5) ( x ) c (.5).5 ( x ) c (.5). ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7 5

Fiite Dierece Iterpolatio Substitutig above values ito Newto s iterpolatio ormula o Eq., we have or c () x.+ (.5) () x +.+.5. ( ) ( ) ( )( ). + () ( ) 6 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8 Fiite Dierece Iterpolatio hereore For a / b.56,. c (.) ad..+.5(.). (. ) τ max c ab 6 4.594(.64)(.5) a τ max b L 44.8 N.m.594 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 9 6

Fiite Dierece Iterpolatio Fidig the Agle o wist: a b a b.64.5 x.56 x.5 a x.5.5 b x x.56.5. x.5 ENCE CHAPER 6d. NUMERICAL INERPOLAION b a L τ max Slide No. Fiite Dierece Iterpolatio Fidig the Agle o wist: From the iitedierece table or c a b a b a b a b ( x ) c (.5).96 ( x ) c (.5) ( x ) c (.5).. ( x ) c (.5). 7 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7

Fiite Dierece Iterpolatio Fiite-dierece able or c a/b c c c c.5.96...5..9.49.6..4 -. -.6.7 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. Fiite Dierece Iterpolatio Substitutig above values ito Newto s iterpolatio ormula o Eq., we have or c () x.96 + (.) () x +.96 +.. ( ) ( ) ( )( ). + (.7 ) ( ) ( )( ) +.7 6 6 ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8

Fiite Dierece Iterpolatio hereore, For a / b.56,. c (.).96 +.(.).586. +.7.. (. )(. ) 6 (. ) ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Fiite Dierece Iterpolatio hereore, a τ max φ c L ab G 44.8() φ 9.586(.64)(.5) (77 ).495 Agle o wist b L ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 5 9

Lagrage Polyomials Lagrage iterpolatio polyomials are useul whe the give data cotais uequal itervals or the idepedet variables x. I act, this is the case or may egieerig problems. he data collectio caot be cotrolled. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 6 Lagrage Polyomials he data are collected or oe variables (x), which is the idepedet variables, as a uctio o secod variable x. I the Newto s iterpolatio ormula, the idepedet variable x was assumed to be measured at a costat iterval, x. Lagrage method ca hadled problem with a varyig x. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 7

Lagrage Polyomials Deiitio he Lagrage iterpolatio polyomial is simply a reormulatio o Newto s polyomial that avoids the computatio usig iite dierece, ad that ca hadled problems with varyig iterval. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 8 Lagrage Polyomials Deiitio o erms he data sample is assumed to cosist o pairs o values measured o x ad (x), with x i beig the ith measured value o the idepedet variable. he method provides a estimate o the value o (x) at a speciied value o x, which is deoted x. ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 9

Lagrage Polyomials Deiitio o erms (x ) estimated value (x i ) measured value o depedet variable i,,,, he method ivolves a weightig uctio, with the weight give to the ith value o or x deoted as w i (x ). ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Lagrage Polyomials Lagrage Polyomial he Lagrage iterpolatig polyomial or estimatig the value o (x ) is give by ( x ) w ( x ) ( ) i i x i () ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4

Lagrage Polyomials Lagrage Polyomial Where i ( x ) i j j i j i j i ( x x j ) ( x x ) w () (x ) estimated value (x i ) measured value o depedet variable i,,,, w i (x ) weightig uctio Π the product o j ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4 Lagrage Polyomials Lagrage Polyomial Combiig Equatios ad, the result is ( x ) w ( x ) ( x ) + w ( x ) ( x ) + w ( x ) ( x ) + K+ w ( x ) ( ) x () ENCE CHAPER 6d. NUMERICAL INERPOLAION Slide No. 4