Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms

Similar documents
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Supporting Information

Supporting information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Supporting Information

Supporting Information

Sacrifical Template-Free Strategy

Electronic Supporting Information (ESI)

Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pka Measurements

Supporting Information:

Supporting Information

Controlled self-assembly of graphene oxide on a remote aluminum foil

Supporting Information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

Supporting Information

Electronic Supplementary Information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Influence of temperature and voltage on electrochemical reduction of graphene oxide

Supporting Information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Supporting Information

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method

Electronic Supplementary Information

Supplementary Information for

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Radiation Induced Reduction: A Effect and Clean Route to

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

Supporting Information Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents

Three-dimensional Multi-recognition Flexible Wearable

The GO was synthesized by oxidation of purified natural small graphite and graphite

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Characterization of partially reduced graphene oxide as room

Supporting Information

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor

In Situ synthesis of architecture for Strong Light-Matter Interactions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Yujuan Zhou, Kecheng Jie and Feihe Huang*

Please do not adjust margins. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning

Supporting Information for: Three-Dimensional Cuprous Oxide Microtube Lattices with High Catalytic

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Electronic Supplementary Information

Graphene Oxide / Polyaniline Nanostructures: Transformation of 2D sheet to 1D Nanotube and in-situ Reduction

Supporting Information s for

Electronic Supplementary Information

Metal-organic frameworks (MOFs) as precursors towards TiO x /C. composites for photodegradation of organic dye

Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics

Supporting Information. Carbon Imidazolate Framework-8 Nanoparticles for

Ultrasensitive Immunoassay Based on Pseudobienzyme. Amplifying System of Choline Oxidase and Luminol-Reduced

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites

MORPHOLOGY AND THERMAL STUDIES OF NICKEL CARBONATE NANOPARTICLES

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

GREEN SYNTHESIS OF STARCH-CAPPED

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supporting Information

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Instantaneous reduction of graphene oxide at room temperature

Conference Paper Synthesis and Efficient Phase Transfer of CdSe Nanoparticles for Hybrid Solar Cell Applications

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supplementary Information:

Supplementary Information

Supporting Information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

enzymatic cascade system

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Novel fungus-titanate bio-nano composites as high performance. absorbents for the efficient removal of radioactive ions from.

Supplementary information for:

Received: 16 th August-2012 Revised: 19 th August-2012 Accepted: 23 rd August-2012 Research article

Electronic Supplementary Information for the Manuscript

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

IMPROVED SOLVOTHERMAL METHOD FOR CUTTING GRAPHENE OXIDE INTO GRAPHENE QUANTUM DOTS

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific

Electronic supplementary information

Graphene oxide hydrogel at solid/liquid interface

Permeable Silica Shell through Surface-Protected Etching

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex

Supporting information

Electronic supplementary information. A longwave optical ph sensor based on red upconversion

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Electronic Supplementary Information. Microwave-assisted, environmentally friendly, one-pot preparation. in electrocatalytic oxidation of methanol

SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Cu 2 graphene oxide composite for removal of contaminants from water and supercapacitor

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

Solution-processable graphene nanomeshes with controlled

Supporting Information. Capping Nanoparticles with Graphene Quantum Dots for Enhanced Thermoelectric Performance

Transcription:

Int Nano Lett (2014) 4:103 108 DOI 10.1007/s40089-014-0125-4 ORIGINAL RESEARCH Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms M. Jannathul Firdhouse P. Lalitha Received: 7 July 2014 / Accepted: 2 September 2014 / Published online: 8 October 2014 The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The aqueous extract of Eichhornia crassipes was used as reductant to produce graphene from graphene oxide by refluxing method. The complete reduction of graphene oxide was monitored using UV Vis spectrophotometer. Characterization of graphene was made through FTIR, XRD, and Raman spectroscopy analysis. The stability of graphene was studied by thermal gravimetric analysis and zeta potential measurements. The nature and surface morphology of the synthesized graphene was analyzed by transmission electron microscopy. The production of graphene using phytoextract as reductant emphasizes on the facile method of synthesis and greener nanotechnology. Keywords Graphene FTIR SEM Raman spectroscopy TEM Introduction Nanotechnology provides a new platform to innovations in all fields of research in order to meet the challenges towards green environment. Nanomaterials have been integrated into numerous applications in electronics, sensors, and biomedical fields because of its range of diverse properties. Nanoscience helps to reduce the formation and emission of pollutants, which helps in the betterment of technological processes involved in research field. The M. J. Firdhouse P. Lalitha (&) Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore 641043, Tamil Nadu, India e-mail: goldenlalitha@gmail.com M. J. Firdhouse e-mail: kfirdhouse@gmail.com rapid development of nanotechnology has led to the commercial applications which enhance the use of a great variety of manufactured nanoparticles. Nanoparticles can be grouped into four types as carbon-based nanomaterials, metal nanoparticles, denderimers, and nanocomposites [1 4]. Carbon-based nanomaterials hold credit for the innumerable applications in all fields of science and technology. One of the carbon-based nanomaterial of great concern in recent years is graphene. Graphene has become a fascinating material due to its novel structural, electronic, thermal, and mechanical properties which arise from the collective behavior of electrons. Graphene was discovered in 2004 from graphite by a simple process but of late its significance has attracted the researchers in the field of material science. Its unique optical properties find potential applications as photovoltaics and transparent conductors. Reduced graphene oxide is also used in nanoelectronics, sensors, nanocomposites, and in water treatment. Graphene is also considered as a promising material for biomedical applications due to its surface enhanced Raman scattering, aqueous processability, and surface functionality. In cancer therapies, graphene is used as potential nanocarrier drugs in gene delivery and bio-imaging purposes [5 13]. Few layer graphenes are used as flexible transparent conductors and to reduce wear and friction on sliding steel surfaces. Among the diverse methods available for synthesis of graphene, the most popular one is chemical synthesis. The chemical reduction of graphene oxide using hydrazine as reducing agent is the successful method used for the production of graphene. One of the drawbacks of this method is that hydrazine hydrate is highly toxic and explosive in nature. This necessitates milder conditions of preparation of graphene. A simple approach was adopted by Zhang et al. using L-Ascorbic acid as reducing agent in

104 Int Nano Lett (2014) 4:103 108 the preparation of graphene [14] and its solubility was also studied on common solvents such as water, N, N-dimethylformamide and N-methyl-2-pyrrolidone [15]. Ma et al. have prepared a stable suspension of reduced graphene oxide (RGO) using L-Lysine and carboxymethyl starch as a stabilizing agent [16]. In view of the varied applications of graphene and the requisite to disembark newer methods of synthesis of graphene, this research work is aimed at biosynthesis of graphene using plant extracts. Eichhornia crassipes (Mart.) Solms is a free floating aquatic plant well known for its production abilities and removal of pollutants from water. The presence of proteins, carbohydrates, alkaloids, quinines, anthocyanins, and several other metabolites in its extracts is reported [17]. Recently, rapid synthesis of gold nanoparticles using aqueous extract of E. crassipes (Water Hyacinth) portrays its use in nanoparticle synthesis [18]. In the present work, a facile method of reduction of graphene oxide was carried out using E. crassipes extract. The reduced graphene oxide was characterized by UV Vis spectroscopy, Raman spectroscopy, FTIR spectroscopy, and XRD and TEM analysis. Experimental Materials Chemicals and reagents used in this study were of analytical grade. Graphite powder was purchased from Loba chemicals. The E. crassipes were collected from the local water body in Coimbatore. Preparation of graphene oxide Graphene oxide was prepared by modified Hummer s method. Graphite powder (2 g) was treated with concentrated sulphuric acid (46 ml) in ice-cold condition and stirred for 2 h. Potassium permanganate (6 g) was added in regular intervals of 30 min at temperature 35 C and the mixture was stirred continuously in an oil bath for 2 h at 50 C. Doubly distilled water (92 ml) was added with vigorous stirring for 15 min till dark brown suspension was obtained. Hydrogen peroxide 30 % (280 ml) was added until the solution turned pale yellow. The solution was filtered with 10 % hydrochloric acid and finally with double distilled water to obtain pure graphene oxide. Thus, the obtained graphene oxide was homogenized using an Ultrasonic homogenizer and dried in vacuum to get few layer nanographene. Preparation of the plant extract Eichhornia crassipes was collected from Singanallur boat house, Coimbatore. The root portion was cut off, washed thoroughly to free it from debris and was shade dried for 20 days. The dried material was sliced and ground. Water hyacinth (1.5 kg) was defatted twice with petroleum ether (2.5 L) for 6 h. The solvent was filtered off and the plant residue of Water hyacinth (20 g) was extracted thrice for 1 h with distilled water. The solvent was filtered, concentrated in a rotary vacuum evaporator (Equitron), and dried to get aqueous extract. Aqueous extract of E. crassipes (100 mg) was sonicated with 100 ml of double distilled water at 50 C by sonic bath (Ultrasonics -1.5L (H)) for 30 min. The extract was filtered using Whatmann filter paper and refrigerated. Synthesis of reduced graphene oxide Graphene oxide (180 mg) was sonicated with 360 ml of double distilled water for 30 min to obtain a stable suspension. The stable solution was treated with 30 ml of aqueous extract of E. crassipes and refluxed. Characterization of graphene UV Vis spectral analysis was performed using Double beam spectrophotometer- 2202 (Systronics). X-ray diffraction analysis was carried out on X-pert X-ray diffractometer. FTIR spectral measurements were analyzed on Shimadzu Nicolet 6700 FTIR spectrometer with the resolution of 0.2 cm -1. Thermo-gravimetric analysis was carried out under nitrogen flow using SII-6300-TG DTA (Exstar) and their masses were recorded as a function of temperature. The samples were heated from room temperature to 600 C at5 C/min. The zeta potential value was measured by NanoPartica SZ 100 (Horiba). The Raman spectrum was obtained using R-3000 QE with an optical resolution of 6 cm -1. The TEM images of reduced graphene oxide were analyzed by FEI s Tecnai TM G2 transmission electron microscope. Results and discussion Graphene oxide was treated with aqueous extract of E. crassipes and refluxed continuously for 10 h. After 6 h, the brown suspension turned black followed by precipitation. The production of graphene was confirmed by UV Vis spectrophotometer. UV Vis spectroscopy The UV Vis spectrum shows an absorption peak at 234 nm for graphene oxide corresponding to the p p* transition of aromatic C C bonds. The absorption peak for graphene at 274 nm confirms the reduction of graphene oxide (Fig. 1)

Int Nano Lett (2014) 4:103 108 105 Fig. 1 UV Vis spectra of graphene oxide and synthesized graphene (WHRGO) with the intensity of graphene oxide being more than the synthesized graphene. The occurrence of red shift has been used as a monitoring tool for the reduction of graphene oxide. The flat absorption band due to dispersion of Dirac electrons in graphene is responsible for the wide band applications. FTIR analysis Figure 2 represents the FTIR spectra of graphene oxide and graphene. The peaks at 1,720 and 1,610 cm -1 are assigned to carbonyl and aromatic region, respectively, for graphene oxide. The absence of carbonyl peak in the FTIR of graphene indicates the formation of reduced graphene oxide. XRD analysis The XRD patterns of graphene oxide (Fig. 3) show a sharp and intense peak at 2h = 9.758 corresponding to the Fig. 3 XRD pattern of reduced graphene oxide; Inset XRD pattern of graphene oxide Bragg s reflection of (002) with an interlayer distance of 7.6 Å. After the reduction of graphene oxide, the peaks at 2h = 268 correspond to the Bragg s reflections of (001) and the disappearance of the peak at 9.758 confirms the formation of graphene. Thermo gravimetric analysis Thermal stability of the graphene synthesized using the aqueous extract of E. crassipes (WHRGO) was compared with that of the chemically synthesized graphene (CRG) by TGA (Fig. 4). A slight mass loss below 1008 C can be attributed to the loss of adsorbed water in both CRG and WHRGO samples. CRG exhibits 10 % weight loss up to 2508 C whereas as WHRGO possesses 15 %. The significant mass loss is detected when WHRGO is heated up to 5508 C but in graphene oxide, the pyrolysis of the remaining oxygen-containing groups and also the burning of ring carbon were observed. The enhanced thermal stability is due to the removal of oxygen-containing functional Fig. 2 FTIR spectra of synthesized graphene (WHRGO) and graphene oxide (GO)

106 Int Nano Lett (2014) 4:103 108 Fig. 4 TGA thermogram of phyto-reduced graphene oxide WHRGO and chemically synthesized graphene (CRG) Fig. 5 Zeta potential measurements of synthesized graphene WHRGO groups. This reveals the stability of the synthesized graphene and confirms the degree of reduction. Zeta potential analysis The zeta potential measurement of the synthesized graphene using the aqueous extract of E. crassipes is given in Fig. 5. The value of zeta potential of graphene -64 mv indicates the stability of the graphene particles. The electrical potential of the interface between the aqueous solution and the stationary layer of ions attached to the particle is used to characterize the electrical properties of the particles. The zeta potential of reduced graphene dispersion is ph dependent and is also lower than that of graphene oxide. Graphene possessing positive surface charge absorbs anions, whereas Fig. 6 Raman spectra of synthesized graphene WHRGO negative surface charge will have the benefits of absorbing cations [19]. Li et al. reported that the presence of surface negative charge on graphene materials attracts the positively charged Cu 2? [20]. The zeta potential results of synthesized graphene (WHRGO) revealed the presence of negative surface charge which can absorb cations and may find application in the removal of heavy metal ions. Raman spectroscopy Figure 6 shows the Raman spectra of the synthesized graphene using the aqueous extract of E. crassipes. The

Int Nano Lett (2014) 4:103 108 107 Fig. 7 TEM images of reduced graphene oxide WHRGO two most intense features of graphene are the G peak at 1,580 cm -1 and a band at 2,700 cm -1 designated as Ǵ. The G peak in graphene is due to the doubly degenerate zone center E 2g mode and Ǵ or 2D is the second order of zone boundary phonons. The G band is normally not observed in the first order Raman spectra of defect free graphite. These phonons will give rise to a peak at 1,350 cm -1 called D peak. In Fig. 6, the peak at 1,350 and 1,594 cm -1 revealed the presence of D and G band. The absence of 2D peak confirms the formation of few layers graphene. Raman spectra provide data to make a distinction between single and few layer graphene. TEM analysis TEM image of the reduced graphene oxide is shown in Fig. 7. The transmission electron microscopic images (Fig. 7a, b) showed graphene sheets to be stacked on one another. Figure 7b, d clearly show the crystal planes of graphene with folded and flat structure, some with microwrinkling. The folding process may depend on the presence of interlayer partial chemical and hydrogen bonds. Thus the synthesized graphene in this work might contain one to few-layer sheets. Conclusion Reduction of graphene oxide was achieved using the aqueous extract of E. crassipes. The formation of reduced graphene oxide was confirmed and characterized by UV, FTIR, TEM, Raman, TGA, and XRD analysis. The zeta potential value of the synthesized graphene was found to be -64 mv and the thermo gravimetric analysis revealed the stability of biosynthesized graphene compared to that of chemically synthesized graphene. The shift values in Raman spectra confirm the formation of few layer graphene. The nature and surface morphology of the synthesized graphene was found to be of few layers with a wrinkling flat surface. Acknowledgments The authors are sincerely thankful to Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore for providing research facilities to carry out this work and Department of Nanoscience and technology, Tamil Nadu Agricultural University, Coimbatore for recording Raman spectra, zeta potential, and for TEM analysis. Conflict of Interests interests. The authors declare that there is no conflict of Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,

108 Int Nano Lett (2014) 4:103 108 distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References 1. Martin, C.R., Kohli, P.: The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2, 29 37 (2003) 2. Bechet, D., Couleaud, P., Frochot, C., Viriot, M.L., Guillemin, F., Barberi-Heyob, M.: Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 26, 612 621 (2008) 3. Ulijn, R.V., Smith, A.M.: Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664 675 (2008) 4. Kotov, N.A., et al.: Nanomaterials for neural interfaces. Adv. Mater. 21, 3970 4004 (2009) 5. Yang, W.R., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F.: Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 2138 (2010) 6. Wang, Y., Li, Z., Wang, J., Li, J., Lin, Y.: Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 5 (2011) 7. Bao, H., Pan, Y., Li, L.: Recent advances in graphene-based nanomaterials for biomedical applications. Nano Life (2012). doi:10.1142/s179398441100030x 8. Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. (2013). doi:10.1021/ar300159f 9. Liu, Z., Robinson, J.T., Sun, X.M., Dai, H.J.: PEGylated nanographene oxide for delivery of water insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876 10877 (2008) 10. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X., Chen, G.N.: A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. Engl. 48, 4785 4787 (2009) 11. Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515 6530 (2010) 12. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci 35, 1350 1375 (2010) 13. Sun, X., Liu, Z., Welsher, K., Robinson, J., Goodwin, A., Zaric, S., Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 212 (2008) 14. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S.: Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 112 114 (2010) 15. Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., et al.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspension. J. Phys. Chem. C 114(14), 6426 6432 (2010) 16. Ma, J., Wang, X., Liu, Y., Wu, T., Liu, Y., Guo, Y., Li, R., Sun, X., Wu, F., Lia, C., Gao, J.: Reduction of graphene oxide with L- lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A 1, 2192 2201 (2013) 17. Jayanthi, P., Lalitha, P., Shubashini, K.S.: Phytochemical investigation of the extracts of Eichhornia crassipes and its solvent fractionates. J. Pharm. Res. 4(5), 1405 1406 (2011) 18. Firdhouse, M.J., Lalitha, P.: Phyto-mediated synthesis of gold nanoparticles using the aqueous extract of Eichhornia crassipes (Mart.) Solms. J. Pharm. Res 1(5), 558 562 (2013) 19. Meo, M.: Proceedings of 9th International Conference on Composite Science and Technology Composite Science and Technology: 2020 Scientific and Technical Challenges, p. 1053. DEStech Publication, Lancaster (2013) 20. Li, M., Liu, C., Cao, H., Zhang, Y.: Surface charge research of graphene oxide, chemically reduced graphene oxide and thermally exfoliated graphene oxide. Adv. Mater. Res. 716, 127 131 (2013)