Lessons from Neutrinos in the IceCube Deep Core Array

Similar documents
Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Recent results from Super-Kamiokande

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

Neutrino Physics: Lecture 1

IceCube: Dawn of Multi-Messenger Astronomy

Neutrino Oscillation Tomography

IceCube Results & PINGU Perspectives

High Energy Neutrino Astronomy

Neutrino Physics: an Introduction

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Neutrino Astronomy. Ph 135 Scott Wilbur

Possible Interpretations of IceCube High Energy Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

Atmospheric Neutrinos and Neutrino Oscillations

High Energy Neutrino Astrophysics with IceCube

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

A Multimessenger Neutrino Point Source Search with IceCube

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Neutrino induced muons

Neutrino Physics: an Introduction

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

UHE NEUTRINOS AND THE GLASHOW RESONANCE

Windows on the Cosmos

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration

The new Siderius Nuncius: Astronomy without light

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Results from T2K. Alex Finch Lancaster University ND280 T2K

Particle Physics Beyond Laboratory Energies

TeV Particle Physics and Physics Beyond the Standard Model

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine

Searches for astrophysical sources of neutrinos using cascade events in IceCube

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrinos in Astrophysics and Cosmology

New Results for ν µ ν e oscillations in MINOS

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Relic Supernova νʻs. Stanley Wojcicki

arxiv: v1 [hep-ex] 20 Jan 2016

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Radio-chemical method

Detectors for astroparticle physics

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

Neutrinos and Beyond: New Windows on Nature

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

New Results from the MINOS Experiment

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Solar neutrinos and the MSW effect

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA)

1. Introduction on Astroparticle Physics Research options

Understanding High Energy Neutrinos

arxiv:astro-ph/ v1 12 Oct 1999

C. Spiering, CERN School Zeuthen, Sept.2003

Neutrino Signals from Dark Matter Decay

From DeepCore to PINGU

(7) Instrumentation in high energy neutrino experiments

( Some of the ) Lateset results from Super-Kamiokande

PoS(EPS-HEP2015)068. The PINGU detector

Atmospheric muons & neutrinos in neutrino telescopes

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

Indirect Searches for Gravitino Dark Matter

Indirect Dark Matter Detection

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

A new IceCube starting track event selection and realtime event stream

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Neutrino Anomalies & CEνNS

High energy neutrino astronomy with the ANTARES Cherenkov telescope

Neutrinos From The Sky and Through the Earth

Solar and atmospheric ν s

Astroparticle Physics with IceCube

John Ellison University of California, Riverside. Quarknet 2008 at UCR

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

EeV Neutrinos in UHECR Surface Detector Arrays:

Secondary particles generated in propagation neutrinos gamma rays

Chart of Elementary Particles

Neutrino oscillation physics potential of Hyper-Kamiokande

High Energy Neutrino Astrophysics Latest results and future prospects

Neutrino Oscillations

Those invisible neutrinos

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Matt Kistler Ohio State University In collaboration with John Beacom

Neutrino Oscillations and the Matter Effect

Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Center using IceCube and ANTARES

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Neutrino Experiments with Reactors

Heaven-Sent Neutrino Interactions From TeV to PeV

Transcription:

Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July 15 2009

Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter annihilation... Correlations with other observations: cosmic rays, gamma rays... Neutrino Telescopes - AMANDA/ICECUBE : Cerenkov light in ice (South Pole) - ANTARES, NEMO, NESTOR, etc. : Cerenkov light in water (Mediterranean) - RICE: radio Cerenkov in ice (South Pole) - ANITA: radio Cerenkov from ice (balloon at South Pole) - PIERRE AUGER: air showers (Argentina,...) -... What to look for?

Lessons for Particle Astrophysics Weak interactions - access to dense, violent envirenoments - test mechanism powering astrophysical sources - cosmic ray acceleration processes - cosmic ray propagation and intergalactic backgrounds -... Lessons for Particle Physics high energies, beyond those accessible in colliders, etc. weak interactions - neutrino interaction cross-sections (in Standard Model!) - neutrino properties - new interactions/particles - dark matter -...

How to do it? - measure all you can! - take into account everything you know/can think about! - identify the right observables! energy distributions angular distributtions flavour composition better detector techniques smart tricks, unique signatures, etc. very good simulations correlations with other observables: photons, protons, etc. can distinguish particle physics from astrophysics effects learn about both!

Deep Core Array motivation: galactic sources, dark matter annihilation galactic center above horizon at South Pole need to reduce large cosmic muon background dense phototube coverage region in the deep ceter region of IceCube

Doug Cowen, Nu2008 Deep Core Array

Deep Core Array greatly reduce large cosmic muon background 4π coverage look at downgoing events, galactic sources, galactic center low energy threshold open up the neutrino energy range from 10 Gev to 100 Gev overlap with Super-Kamiokande at low energy and IceCube at high energy

Atmospheric Neutinos Cosmic ray π + π 0 30km µ + e + ν e ν µ ν µ Underground ν e, ν e,, ν µ, ν µ,ν τ, ν τ detector background to many searches Lots of them!

Atmospheric Neutinos Super-Kamiokande: Expect: N(ν µ + ν µ ) N(ν e + ν e ) isotropic 2 at low energy used zenith angle distributin to prove neutrino oscillations IceCube Deep Core N(ν µ+ ν µ ) N(ν e + ν e ) 10 steep energy spectrum (E 3 ν ) ν e flux not measured at high energies

Neutrino oscillations: massive and mixed neutrinos ν e produced together with the electron in weak interactions does not have to be one of the definite mass particles ν 1 or ν 2 ( νe ν µ ) = ( cos θ sin θ sin θ cos θ ) ( ν1 ν 2 ) ( P(ν α ν β ) = sin 2 2θsin 2 m 2 ) ( ) L = sin 2 2θsin 2 1.27 m2 L 4E E m 2 ji = m2 j m2 i [ m 2 ] : ev, [L] : km, [E] : GeV

Summary of Experimental Results Solar Neutrinos: ν e ν x, x = µ, τ + reactor antineutrinos m 2 sol 7.6 10 5 ev 2 tan 2 θ sol 0.45 Atmospheric Neutrinos: ν µ ν x, x = τ + accelerator neutrinos m 2 atm 2.5 10 3 ev 2 sin 2 2θ atm 1 Reactor antineutrinos: ν e ν e sin 2 2θ reactor < 0.1 for m 2 10 3 ev 2

Three flavors neutrino oscillations c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 c 23 s 13 e iδ c 12 s 23 s 12 c 23 s 13 e iδ c 23 c 13 We want to measure: θ 13 hierarchy (sign of m 2 atm ) CP violation (δ) m 2 21 = m2 sol, m2 32 = m2 atm θ 12 = θ sol, θ 13 = θ reactor, θ 23 = θ atm, δ large effort to build new accelerator experiments for this purpose use matter effetcs

Neutrino Oscillations in the IceCube Deep Core tracks: µ like fully contained events Angular distribution: cos θ (0,1) atmosperic flux normalization cos θ ( 0.9,0) + main oscillation signal ( m 2 32, θ 23) cos θ ( 1, 0.9) + matter effects (θ 13, hierarchy, CP) Energy distribution: E 40GeV: neutrino oscillations 50 GeV E 5 TeV atmospheric neutrino flux E 10 TeV: Earth density profile

Normal versus inverted mass hierarchy O. Mena, I. M., S. Razzaque, Phys.Rev.D78,093003 (2008) cos θ ( 1, 0.9) cos θ ( 0.9, 0.8) cos θ ( 0.8, 0.7) Note E µ 0.5E ν

Normal versus inverted mass hierarchy χ 2 fit to discriminate between normal and inverted hierarchy Normal 100 Mt yr,θ 23 45, No systematics Inverted 100 Mt yr,θ 23 45, No systematics 150 150 100 90 100 90 50 99 50 99 cp 0 cp 0 50 95 50 95 100 68 100 68 150 150 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 sin 2 2Θ 13 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 sin 2 2Θ 13

Normal versus inverted mass hierarchy χ 2 fit to discriminate between normal and inverted hierarchy Normal 100 Mt yr,θ 23 45, 10 systematics Inverted 100 Mt yr,θ 23 45, 10 systematics 150 150 100 90 100 50 99 50 cp 0 cp 0 50 95 50 100 68 100 68 150 150 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 sin 2 2Θ 13 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 sin 2 2Θ 13

How about cascades? Electromagnetic cascades: Tau decay: τ e + ν e + ν τ ν e CC interactions: ν e + N e + X Hadronic cascades Tau decay: τ ν τ + X ν τ NC interactions: ν τ + N ν τ + X ν τ CC interactions: ν τ + N τ + X ν e,µ NC and CC interactions

ν τ 1 ν µ ν µ 0.8 ν µ ν τ Oscillation probabilities 0.6 0.4 0.2 0 5 10 15 20 25 30 35 40 45 50 E ν [GeV] large number of ν τ

4500 4000 Number of shower events for sin 2 2θ 13 = 0.01 and δ = 0 in bin sizes of 5GeV and c ν (-1,-0.9) atm ν e and ν µ ->ν e ν τ ->ν e 3500 3000 Number of events 2500 2000 1500 1000 500 0 5 10 15 20 25 30 Shower Energy[GeV]

ν τ cascades with G. Giordano and O. Mena ν µ ν τ τ e or hadrons dominates present world sample of ν τ events: 9 (DONUT) high statistics ν τ interactions first direct evidence for ν µ ν τ appearance ν τ interaction cross-section non-standard interactions of ν τ experience with cascade detection

Outlook IceCube Deep Core galactic sources, dark matter annihilation atmospheric neutrinos high statistics, large energy range better understanding of background for other searches neutrino oscillations mass hierarchy ν τ : oscillations, ν τ interactions, cascade detection