IceCube Results & PINGU Perspectives

Size: px
Start display at page:

Download "IceCube Results & PINGU Perspectives"

Transcription

1 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy

2 2 IceCube Detector ~1km 3 of instrumented ice Uses ~5k optical sensors across 86 vertical strings to detect Cherenkov radiation Deployed km below the surface ν IceCube DOM

3 2 IceCube Detector ~1km 3 of instrumented ice Uses ~5k optical sensors across 86 vertical strings to detect Cherenkov radiation Deployed km below the surface νµ IceCube DOM

4 3 Event Movie

5 3 Event Movie

6 4 Track topology (e.g. induced by muon neutrino)! Good pointing, Lower bound on energy for through-going events νμ + N μ + X Track νx + X νx + X Cascade Cascade topology (e.g. induced by electron neutrino)! Good energy resolution, 15% Some pointing, 10-15

7 4 Track topology (e.g. induced by muon neutrino)! Good pointing, Lower bound on energy for through-going events νμ + N μ + X Track νx + X νx + X Cascade Cascade topology (e.g. induced by electron neutrino)! Good energy resolution, 15% Some pointing, 10-15

8 5 IceCube Classic

9 6 High Energy Starting Events (HESE)

10 6 High Energy Starting Events (HESE) Follow-up to observation of two events > 1 PeV in IceCube search for Ultra-High Energy (GZK) neutrinos

11 6 High Energy Starting Events (HESE) Follow-up to observation of two events > 1 PeV in IceCube search for Ultra-High Energy (GZK) neutrinos Use outermost layer of IceCube as a veto region Identifies possible muon background Enforces neutrino interaction containment

12 6 High Energy Starting Events (HESE) Follow-up to observation of two events > 1 PeV in IceCube search for Ultra-High Energy (GZK) neutrinos Use outermost layer of IceCube as a veto region Identifies possible muon background Enforces neutrino interaction containment Focused on brightest events with > 6000 photoelectrons

13 7 High Energy Neutrinos Ultra-high energy IceCube (GZK) astrophysical search found 2 anomalous background events in 2 years of data 1.04±0.16 PeV 1.14±0.17 PeV

14 7 High Energy Neutrinos Ultra-high energy IceCube (GZK) astrophysical search found 2 anomalous background events in 2 years of data 1.04±0.16 PeV 1.14±0.17 PeV

15 8 3-year HESE Result! 36(+1) events total! 8.4 ± 4.2 atm. muons atm. neutrinos 5.7σ rejection of only atmospheric neutrino flux! Consistent with 1:1:1 flavor ratio

16 9 HESE-III Sky Map arxiv: No significant evidence for clustering

17 10 Natural Neutrino Flux (>1 GeV)

18 10 Natural Neutrino Flux (>1 GeV) Combination of conventional neutrino, high energy astrophysical, and possible prompt neutrinos from charm hadron decay

19 10 Natural Neutrino Flux (>1 GeV) Cosmic Ray Combination of conventional neutrino, high energy astrophysical, and possible prompt neutrinos from charm hadron decay

20 10 Natural Neutrino Flux (>1 GeV) Cosmic Ray X Charm Hadron Combination of conventional neutrino, high energy astrophysical, and possible prompt neutrinos from charm hadron decay

21 10 Natural Neutrino Flux (>1 GeV) Cosmic Ray X X Charm Hadron Neutrino Combination of conventional neutrino, high energy astrophysical, and possible prompt neutrinos from charm hadron decay

22 11 Prompt Neutrino Flux Cosmic Ray X X Charm Hadron Neutrino

23 11 Prompt Neutrino Flux Cosmic Ray X X Charm Hadron Neutrino Prompt flux more closely follows the incident CR energy spectrum (E -2 ) than the conventional neutrino spectrum (E -2.7 to -3.7 )

24 11 Prompt Neutrino Flux Cosmic Ray X X Charm Hadron Neutrino Prompt flux more closely follows the incident CR energy spectrum (E -2 ) than the conventional neutrino spectrum (E -2.7 to -3.7 ) Prompt ν e versus ν µ channel is advantageous due to conventional ν µ bkg

25 12 Prompt Component

26 12 Prompt Component Prompt can be constrained by flux in the TeV range Higher energy is dominated by astrophysical flux Lower energy is dominated by conventional flux (pion/kaon decay)

27 12 Prompt Component Prompt can be constrained by flux in the TeV range Higher energy is dominated by astrophysical flux Lower energy is dominated by conventional flux (pion/kaon decay) Northern vs. Southern sky comparison weakly breaks the degeneracy between the astrophysical and prompt flux

28 13 A Prompt Result Atm. Neutrinos Atm. Muons Places upper limits on some prompt models (<1.4 ERS model)

29 14 Fundamental Physics with DeepCore

30 15 DeepCore scattering

31 15 DeepCore Low-energy extension Closer instrumentation Clearer Ice Higher efficiency PMTs scattering

32 15 DeepCore Low-energy extension Closer instrumentation Clearer Ice Higher efficiency PMTs Use surrounding IceCube as a veto volume scattering

33 DeepCore Low-energy extension Closer instrumentation Clearer Ice Higher efficiency PMTs Use surrounding IceCube as a veto volume scattering Oscillation Physics νµ disappearance ντ appearance* *Covered later for PINGU 15

34 16 Neutrino Oscillation νµ νµ νµ ~12,700km νµ νµ Mena, Mocioiu & Razzaque, Phys. Rev. D78, (2008) ντ appearance νµ disappearance IceCube DeepCore

35 16 Neutrino Oscillation Northern Hemisphere νµ oscillating over one earth radii produces νµ (ντ) oscillation minimum (maximum) at ~25 GeV νµ νµ νµ ~12,700km νµ νµ Mena, Mocioiu & Razzaque, Phys. Rev. D78, (2008) ντ appearance νµ disappearance IceCube DeepCore

36 16 Neutrino Oscillation Northern Hemisphere νµ oscillating over one earth radii produces νµ (ντ) oscillation minimum (maximum) at ~25 GeV Beam never turns off νµ νµ νµ ~12,700km νµ νµ Mena, Mocioiu & Razzaque, Phys. Rev. D78, (2008) ντ appearance νµ disappearance IceCube DeepCore

37 16 Neutrino Oscillation Northern Hemisphere νµ oscillating over one earth radii produces νµ (ντ) oscillation minimum (maximum) at ~25 GeV Beam never turns off Samples all terrestrial baselines νµ νµ νµ ~12,700km νµ νµ Mena, Mocioiu & Razzaque, Phys. Rev. D78, (2008) ντ appearance νµ disappearance IceCube DeepCore

38 17 νµ Disappearance in DeepCore High-purity analysis selected 5293 events over MC Expectation (3-yr) Type Osc. No Osc νµ ντ νe 418 νnc Atm. µ 54 Total

39 18 Oscillation Contours

40 19 Next?

41 20 Two Directions

42 20 Two Directions Higher energy Point sources Neutrino flavor ratios HEX - High Energy Extension

43 20 Two Directions Higher energy Point sources Neutrino flavor ratios HEX - High Energy Extension Lower Energy - just past DeepCore at the O(1) GeV sensitivity: Resolve the ordering of the Neutrino Mass Hierarchy Improve neutrino oscillation ντ appearance non-maximal θ 23 GeV mass Dark Matter PINGU

44 20 Two Directions Higher energy Point sources Neutrino flavor ratios HEX - High Energy Extension Lower Energy - just past DeepCore at the O(1) GeV sensitivity: Resolve the ordering of the Neutrino Mass Hierarchy Improve neutrino oscillation ντ appearance non-maximal θ 23 GeV mass Dark Matter PINGU

45 21 PINGU

46 22 Precision IceCube Next Generation Upgrade IceCube DeepCore PINGU Letter of Intent - arxiv:

47 22 Precision IceCube Next Generation Upgrade Use existing and familiar technology to infill DeepCore IceCube DeepCore PINGU Letter of Intent - arxiv:

48 22 Precision IceCube Next Generation Upgrade Use existing and familiar technology to infill DeepCore IceCube Improve rejection of cosmic ray muon background DeepCore PINGU Letter of Intent - arxiv:

49 22 Precision IceCube Next Generation Upgrade Use existing and familiar technology to infill DeepCore IceCube Improve rejection of cosmic ray muon background DeepCore Primary physics goal is resolving neutrino mass hierarchy PINGU Letter of Intent - arxiv:

50 23 PINGU Simulation Event DeepCore 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade DeepCore+PINGU

51 23 PINGU Simulation Event DeepCore 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade DeepCore+PINGU

52 23 PINGU Simulation Event DeepCore 9.28 GeV Neutrino, 4.9 GeV muon, 4.5 GeV cascade ~20 vs. ~50 Hit Modules DeepCore+PINGU

53 24 PINGU Neutrino Mass Hierarchy

54 24 PINGU Neutrino Mass Hierarchy 1 1

55 24 PINGU Neutrino Mass Hierarchy

56 24 PINGU Neutrino Mass Hierarchy Inverted/Normal hierarchy has up to a 20% difference in oscillation probability for specific energies and zenith angles (baselines)

57 25 Neutrino Mass Hierarchy by Eye Track-Like Events (mainly CC νµ+νµ) Preliminary 1-year exposure

58 26 Systematics Several of the main systematics have been examined Preliminary

59 27 Mass Hierarchy Bottom Line

60 28 ντ Appearance in PINGU

61 28 ντ Appearance in PINGU Direct measure of Uτ3 2

62 28 ντ Appearance in PINGU Direct measure of Uτ3 2 (GeV) E ν livetime: 1 year PINGU preliminary N all flavours -N νe +ν µ )/ all flavours (N cos(zen) 0

63 28 ντ Appearance in PINGU Direct measure of Uτ3 2 Energy and zenith angle excess in cascade channel (GeV) E ν livetime: 1 year PINGU preliminary cos(zen) N all flavours -N νe +ν µ )/ all flavours (N PINGU plots currently use same initial Boosted Decision Tree as NMH, but secondary selection for `cascades

64 28 ντ Appearance in PINGU Direct measure of Uτ3 2 Energy and zenith angle excess in cascade channel PINGU plots currently use same initial Boosted Decision Tree as NMH, but secondary selection for `cascades (GeV) E ν Significance to exclude no ν τ appearance (σ) cos(zen) livetime: 1 year PINGU preliminary PINGU true ν τ norm=1 preliminary expected ±1σ ±2σ α=β limit Gaussian approximation Livetime (months) N all flavours -N νe +ν µ )/ all flavours (N

65 Measuring ντ Appearance 29

66 Measuring ντ Appearance Events/year PINGU E ν [1,80] GeV preliminary νµ νe ντ cos(zen) 29

67 Measuring ντ Appearance Events/year PINGU E ν [1,80] GeV preliminary normalization PINGU νµ νe ντ cos(zen) True ν τ 0.5 5σ preliminary expected ±1σ ±2σ measured ν τ norm= Livetime (months) 29

68 30 Conclusions IceCube is opening a new window on neutrino astronomy with 5.7σ observation of astrophysical neutrinos and probing atmospheric charm meson production! Potential with PINGU to quickly resolve the ordering of the neutrino mass hierarchy in addition to enhancing other physics (ντ appearance, non-maximal θ 23, O(1) GeV dark matter, )

69 31 IceCube is opening a new window on neutrino astronomy with 5.7σ observation of astrophysical neutrinos and probing atmospheric charm hadron production Potential with PINGU to quickly resolve the ordering of the neutrino mass hierarchy in addition to enhancing other physics (ν τ appearance, non-maximal θ 23, O(1) GeV dark matter, )

70 31 IceCube is opening a new window on neutrino astronomy with 5.7σ observation of astrophysical neutrinos and probing atmospheric charm hadron production Potential with PINGU to quickly resolve the ordering of the neutrino mass hierarchy in addition to enhancing other physics (ν τ appearance, non-maximal θ 23, O(1) GeV dark matter, )

71 32

72 33 Backup

73 34 Science Portfolio (Partial) Measurements Cosmic Ray Anisotropy - arxiv: Diffuse Neutrino Flux - arxiv: Atmospheric Neutrino Spectrum - arxiv: Neutrino Oscillation - arxiv: Atmospheric Electron Neutrino Flux - arxiv: Searches Supernova 2008D - arxiv: Neutrino Induced Cascades - arxiv: Neutrino Emission Constraints on 2010 Crab Flare - arxiv: Point Sources - arxiv: , Gamma Ray Burst Neutrino Emission - arxiv: Slow Magnetic Monopole - arxiv: Dark Matter - arxiv: , ,

74 35 HESE-III Event Breakdown

75 Potential High Energy Extension (HEX) DecaCube (1/2/3) IceCube DeepCore Spacing 1 (120m): IceCube (1 km 3 ) + 98 strings (1,3 km 3 ) = 2,3 km 3! Spacing 2 (240m): IceCube (1 km 3 ) + 99 strings (5,3 km 3 ) = 6,3 km 3! Spacing 3 (360m): IceCube (1 km 3 ) + 95 strings (11,6 km 3 ) = 12,6 km 3 Chosen geometry not optimum (i.e. for HESE) historically chosen to demonstrate that we do respect boundary conditions *courtesy of C. Wiebusch (RTWH Aachen) 36

76 37 Dark Matter in PINGU Probes lower mass region! Independent test of Spin-Independent results from direct detection experiments

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 IceCube DeepCore Original IceCube design focused on

More information

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration Cosmic Neutrinos in IceCube Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration HEM KICP UChicago 6/9/2014 1 Outline IceCube capabilities The discovery analysis with updated

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration) IceCube and High Energy Neutrinos Stony Brook University, Stony Brook, NY 11794-3800, USA E-mail: Joanna.Kiryluk@stonybrook.edu IceCube is a 1km 3 neutrino telescope that was designed to discover astrophysical

More information

High Energy Neutrino Astrophysics Latest results and future prospects

High Energy Neutrino Astrophysics Latest results and future prospects High Energy Neutrino Astrophysics Latest results and future prospects C. Spiering, Moscow, August 22, 2013 DETECTION PRINCIPLE Detection Modes Muon track from CC muon neutrino interactions Angular resolution

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube Mariola Lesiak-Bzdak Stony Brook University for IceCube Collaboration Geographic South Pole" Outline: } Motivation

More information

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大 THE EHE EVENT 170922 AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY Lu Lu 千葉大 2 3 On-source n p TeV - PeV pp p n The Cosmic Neutrinos TeV->EeV p gp p n photopion production n GZK cosmogenic n EeV

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Searches for astrophysical sources of neutrinos using cascade events in IceCube

Searches for astrophysical sources of neutrinos using cascade events in IceCube Searches for astrophysical sources of neutrinos using cascade events in IceCube Mike Richman TeVPA 2017 August 8, 2017 Source Searches with IceCube Cascades TeVPA 17 Mike Richman (Drexel University) 1

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Jutta Schnabel on behalf of the ANTARES collaboration Erlangen Centre for Astroparticle Physics, Erwin-Rommel Str.

More information

Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube

Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube Measurement of High Energy Neutrino Nucleon Cross Section and Astrophysical Neutrino Flux Anisotropy Study of Cascade Channel with IceCube The IceCube Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_icecube

More information

Neutrino Astronomy with IceCube at the Earth's South Pole

Neutrino Astronomy with IceCube at the Earth's South Pole Neutrino Astronomy with IceCube at the Earth's South Pole Naoko Kurahashi Neilson (Drexel University) Yale NPA Seminar, Jan 26th, 2017 1 How it started... Highest energy particles observed Charged particles

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll.

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll. SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET D. Dornic (CPPM) on behalf the ANTARES Coll. MORIOND VHEPU @ La Thuile, March 2017 Neutrino telescopes: science scope Low$Energy$$

More information

Lessons from Neutrinos in the IceCube Deep Core Array

Lessons from Neutrinos in the IceCube Deep Core Array Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July 15 2009 Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

Status and Perspectives for KM3NeT/ORCA

Status and Perspectives for KM3NeT/ORCA , on behalf of the KMNeT Collaboration Centre de Physique des Particules de Marseille, France E-mail: quinn@cppm.inp.fr The KMNeT Collaboration is constructing neutrino detectors at depths of 7 m and m

More information

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration 1 Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration sign unknown (vacuum) sign known 2 Mass Hierarchy matter Hierarchy important for

More information

Origin of Cosmic Rays

Origin of Cosmic Rays Origin of Cosmic Rays Part 2: Neutrinos as Cosmic Ray messengers Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis' Hermann Kolanoski Humboldt-Universität

More information

A Multimessenger Neutrino Point Source Search with IceCube

A Multimessenger Neutrino Point Source Search with IceCube A Multimessenger Neutrino Point Source Search with IceCube Mădălina Chera FLC Group Meeting 04.10.2010 Mădălina Chera Overview 1 Introduction to UHE Cosmic Rays and Neutrino Astrophysics; 2 Motivation

More information

A new IceCube starting track event selection and realtime event stream

A new IceCube starting track event selection and realtime event stream A new IceCube starting track event selection and realtime event stream Sarah Mancina Kyle Jero Advisor: Albrecht Karle Neutrino Parallel TeVPA 2017 Columbus, OH August 8th, 2017 IceCube and Atmospheric

More information

High Energy Neutrino Astronomy lecture 2

High Energy Neutrino Astronomy lecture 2 High Energy Neutrino Astronomy lecture 2 VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Muon Reconstruction in IceCube

Muon Reconstruction in IceCube Muon Reconstruction in IceCube K.Hoshina for the IceCube collaboration June 26 2008 International workshop on High Energy Earth Science in Tokyo Introduction 2 IceCube is... A cubic-kilometer neutrino

More information

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Nora Linn Strotjohann for the DESY Real-Time Group GROWTH Meeting at Caltech, July 26th 2016 The IceCube Neutrino

More information

Sungkyunkwan University, Korea

Sungkyunkwan University, Korea Neutrino Oscillation Tomography rottnospam@skku.nospamedu Sungkyunkwan University, Korea Spectrometry of the Earth using Neutrino Oscillations (Sungkyunkwan U.), Akimichi Taketa (ERI, Tokyo), Debanjan

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University black hole radiation enveloping black hole The highest

More information

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration IceCube & DeepCore Overview and Dark Matter Searches for the IceCube collaboration Content Overview: IceCube DeepCore (DOMs, geometry, deep ice properties, trigger & filter) Dark Matter searches: (current

More information

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA PIERA SAPIENZA ON BEHALF OF THE KM3NET COLLABORATION FRONTIERS OF RESEARCH ON COSMIC RAY GAMMA - LA PALMA 26-29 AUGUST 2015 OUTLINE MOTIVATION DETECTOR

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Search for diffuse cosmic neutrino fluxes with the ANTARES detector Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 1 Overview ANTARES description Full sky searches Special region searches Fermi bubbles

More information

Possible Interpretations of IceCube High Energy Neutrinos

Possible Interpretations of IceCube High Energy Neutrinos Possible Interpretations of IceCube High Energy Neutrinos ~1 km² Geographic South Pole Program on Particle Physics at the Dawn of the LHC13. ICTP-SP. Boris Panes, USP. Nov 12-2015 Based on 1411.5318 and

More information

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Cherenkov 2005 27-29 April 2005 Palaiseau, France Contents: The AMANDA/IceCube detection principles Search for High Energy

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector The IceCube Collaboration E-mail: tessa.carver@unige.ch In 2012 the IceCube detector observed the first clear

More information

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore for the IceCube collaboration Content Overview: IceCube (see IceCube status plenary talk by D. Williams ) DeepCore

More information

PoS(EPS-HEP2015)068. The PINGU detector

PoS(EPS-HEP2015)068. The PINGU detector for the IceCube-Gen2 collaboration Universität Mainz, Germany E-mail: tehrhardt@icecube.wisc.edu The world s largest neutrino telescope, the IceCube Neutrino Observatory, is built in one of the planet

More information

Catching Neutrinos with an IceCube

Catching Neutrinos with an IceCube Catching Neutrinos with an IceCube Mathieu Labare (for the IceCube Collaboration) Vrije Universiteit Brussel - IIHE mlabare@icecube.wisc.edu 04 04 2011, Neutrino-Gamma Workshop @ Marseille IceCube Collaboration

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef 1 high energy Quanta from the Universe (why look for neutrinos) Universe contains very high Energy particle accelerators (E = up to 10 6

More information

Kurt Woschnagg UC Berkeley

Kurt Woschnagg UC Berkeley Neutrino Astronomy at the South Pole Latest results from IceCube Kurt Woschnagg UC Berkeley SLAC Summer Institute August 3, 2011 Neutrinos as Cosmic Messengers Neutrinos and the Origin of Cosmic Rays Cosmic

More information

RESULTS FROM AMANDA. Carlos de los Heros Division of High Energy Physics Uppsala University. CRIS04 Catania, Italy, May 31-June 4

RESULTS FROM AMANDA. Carlos de los Heros Division of High Energy Physics Uppsala University. CRIS04 Catania, Italy, May 31-June 4 RESULTS FROM AMANDA Carlos de los Heros Division of High Energy Physics Uppsala University CRIS04 Catania, Italy, May 31-June 4 The AMANDA/ICECUBE Collaborations Bartol Research Institute UC Berkeley UC

More information

Search for GeV neutrinos associated with solar flares with IceCube

Search for GeV neutrinos associated with solar flares with IceCube Search for GeV neutrinos associated with solar flares with IceCube The IceCube Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_icecube E-mail: gdewasse@icecube.wisc.edu Since the end

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University the 1 st discovery of the PeV ν Bert Physical Review

More information

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration 1 In-ice self-veto techniques for IceCube-Gen2 The IceCube-Gen2 Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_gen2 E-mail: jan.lunemann@vub.ac.be The discovery of astrophysical high-energy

More information

PoS(NEUTEL2015)056. Neutrino mass hierarchy with PINGU

PoS(NEUTEL2015)056. Neutrino mass hierarchy with PINGU Neutrino mass hierarchy with PINGU for the PINGU IceCube collaboration Universität Mainz, Germany E-mail: sboeser@uni-mainz.de Neutrino oscillations first measured via atmospheric neutrinos have so far

More information

Coll. Ljubljana, H.Kolanoski - IceCube Neutrino Observatory 1. Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Coll. Ljubljana, H.Kolanoski - IceCube Neutrino Observatory 1. Hermann Kolanoski Humboldt-Universität zu Berlin and DESY Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 1 Hermann Kolanoski Humboldt-Universität zu Berlin and DESY Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory

More information

Neutrino Radiography of the Earth with the IceCube Neutrino Observatory

Neutrino Radiography of the Earth with the IceCube Neutrino Observatory Neutrino Radiography of the Earth with the IceCube Neutrino Observatory Dec.4. 2012 AGU Fall Meeting 2012 in San Francisco Kotoyo Hoshina, Hiroyuki Tanaka and IceCube Collaboration Scan our Earth with

More information

Neutrino Astronomy at the South Pole AMANDA and IceCube

Neutrino Astronomy at the South Pole AMANDA and IceCube 1 Neutrino Astronomy at the South Pole AMANDA and IceCube Ignacio Taboada University of California - Berkeley Topics in Astroparticle and Underground Physics Zaragoza. Sept 10-14, 2005 2 The IceCube Collaboration

More information

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA University of Minnesota Minneapolis, Minnesota 5555, USA E-mail: pawloski@physics.umn.edu NOvA is a long-baseline accelerator neutrino experiment that studies neutrino oscillation phenomena governed by

More information

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA EPJ Web of Conferences 116, 11004 (2016) DOI: 10.1051/epjconf/201611611004 C Owned by the authors, published by EDP Sciences, 2016 Results from IceCube Tyce DeYoung a for the IceCube Collaboration Dept.

More information

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis: http://area51.berkeley.edu/manuscripts Goals! Perform an all-sky search

More information

The Shadow of the Moon in IceCube

The Shadow of the Moon in IceCube The Shadow of the Moon in IceCube Laura Gladstone University of Wisconsin, Madison for the IceCube Collaboration Young Scientists Forum 46th Rencontres de Moriond La Thuile, Italy 1 Motivation: we know

More information

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR) Gamma-rays, neutrinos and AGILE Fabrizio Lucarelli (ASI-SSDC & INAF-OAR) Outlook 2 Overview of neutrino astronomy Main IceCube results Cosmic neutrino source candidates AGILE search for γ-ray counterparts

More information

The ANTARES neutrino telescope:

The ANTARES neutrino telescope: The ANTARES neutrino telescope: main results and perspectives for KM3NeT Sergio Navas University of Granada, Spain On behalf of the ANTARES and KM3NeT Collaborations 14th Rencontres du Vietnam: Very High

More information

First Results from IceCube/DeepCore and Prospects for Low Energy Physics in the Ice

First Results from IceCube/DeepCore and Prospects for Low Energy Physics in the Ice First Results from IceCube/DeepCore and Prospects for Low Energy Physics in the Ice Doug Cowen IceCube Collaboration and Department of Physics Penn State University NuSky Trieste, Italy June 2011 1 Outline

More information

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration) Searches for Dark Matter from the Galactic Halo with IceCube Carsten Rott carott @ mps. ohio-state. edu (for the IceCube Collaboration) Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

arxiv: v1 [hep-ex] 20 Jan 2016

arxiv: v1 [hep-ex] 20 Jan 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2018 arxiv:1601.05245v1 [hep-ex] 20 Jan 2016 From DeepCore to PINGU

More information

Gustav Wikström. for the IceCube collaboration

Gustav Wikström. for the IceCube collaboration Results and prospects of Dark Matter searches in IceCube for the IceCube collaboration Direct detection situation: Spin dependent WIMP proton cross section Big gap! 2 IceCube 22 string & AMANDA 7 yr limit

More information

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration Searching for Physics Beyond the Standard Model with the IceCube Neutrino Observatory John Kelley for the IceCube Collaboration Wisconsin IceCube Particle Astrophysics Center University of Wisconsin Madison,

More information

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM Detection of transient sources with the ANTARES telescope Manuela Vecchi CPPM Multimessenger Astronomy CRs astronomy feasible at energies higher than 1019 ev extragalactic origin UHECRs horizon limited

More information

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg with! Cecilia Lunardini and Lili Yang Multi-messenger Astronomy 2 p π ±# ν# cosmic rays + neutrinos p

More information

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration The VERITAS Dark M atter and Astroparticle Programs Benjamin Zitzer For The VERITAS Collaboration Introduction to VERITAS Array of four IACTs in Southern AZ, USA Employs ~100 Scientists in five countries

More information

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA)

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA) KM3NeT Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA) International Solvay Institutes 27 29 May 2015, Brussels, Belgium. Maarten de Jong 1 Introduction KM3NeT is a new

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

IceCube)and)high)energy) neutrino)astronomy)

IceCube)and)high)energy) neutrino)astronomy) IceCube)and)high)energy) neutrino)astronomy) Albrecht)Karle) University)of)Wisconsin/Madison) Lecture,)March)4,)) Physics)734)) Albrecht)Karle,)UW/Madison) High)energy)parEcles)in)the)Universe) Cosmic)Rays)

More information

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 MINOS Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 2 Overview and Current Status Beam Detectors Analyses Neutrino Charged Current

More information

Results from the ANTARES neutrino telescope

Results from the ANTARES neutrino telescope EPJ Web of Conferences 116, 11006 (2016) DOI: 10.1051/epjconf/201611611006 C Owned by the authors, published by EDP Sciences, 2016 Results from the ANTARES neutrino telescope M. Spurio, on behalf of the

More information

Boosted Dark Matter in IceCube and at the Galactic Center

Boosted Dark Matter in IceCube and at the Galactic Center Boosted Dark Matter in IceCube and at the Galactic Center (based on JHEP 1504, 105 (2015) [arxiv:1503.02669] ) collaborated with Joachim Kopp, Xiao-ping Wang Jia Liu MITP, Johannes Gutenberg University

More information

The LENA Neutrino Observatory

The LENA Neutrino Observatory The LENA Neutrino Observatory for the LENA Collaboration 1 Consortium of European science institutions and industry partners Design studies funded by the European Community (FP7) LAGUNA: detector site,

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

Recent Results from ANTARES and prospects for KM3NeT. Aart Heijboer. Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations

Recent Results from ANTARES and prospects for KM3NeT. Aart Heijboer. Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations Recent Results from ANTARES and prospects for KM3NeT Aart Heijboer Nikhef, Amsterdam On behalf of the ANTARES and KM3NeT collaborations European Neutrino Telescopes 2 * and ANTARES ANTARES KM3NeT * * Münster

More information

A search for extremely high energy neutrino flux with the 6 years of IceCube data

A search for extremely high energy neutrino flux with the 6 years of IceCube data A search for extremely high energy neutrino flux with the 6 years of IceCube data Aya Ishihara for the IceCube collaboration Chiba University, Japan TAUP2015 Torino, Italy Ultra-high energy neutrinos in

More information

VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT

VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT DAMIEN DORNIC (CPPM) CFR Cos: Meeting de la communauté de recherche sur le rayonnement cosmique!! APC - 26-28 mars 2018 NEUTRINO AS COSMIC MESSENGER

More information

Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector

Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector Irina Mocioiu Pennsylvania State University Miami 2010 IceCube Deep Core mobvabon: look for neutrinos from galacbc sources, dark mager

More information

NEUTRINO ASTRONOMY AT THE SOUTH POLE

NEUTRINO ASTRONOMY AT THE SOUTH POLE NEUTRINO ASTRONOMY AT THE SOUTH POLE D.J. BOERSMA The IceCube Project, 222 West Washington Avenue, Madison, Wisconsin, USA E-mail: boersma@icecube.wisc.edu A brief overview of AMANDA and IceCube is presented,

More information

From DeepCore to PINGU

From DeepCore to PINGU EPJ Web of Conferences 116, 11009 (2016) DOI: 10.1051/epjconf/201611611009 C Owned by the authors, published by EDP Sciences, 2016 From DeepCore to PINGU Measuring atmospheric neutrino oscillations at

More information

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari INFN Sezione di Bari E-mail: lorenzo.magaletti@ba.infn.it The TK (Tokai-to-Kamioka) experiment is a second generation long baseline neutrino oscillation experiment that probes physics beyond the Standard

More information

arxiv: v1 [hep-ex] 3 Dec 2018

arxiv: v1 [hep-ex] 3 Dec 2018 Tau Neutrinos in IceCube, KM3NeT and the Pierre Auger Observatory D. van Eijk 1 1 Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 373, USA * daan.vaneijk@icecube.wisc.edu

More information

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review Stephen Portillo Review of R. Abbasi et al. (IceCube Collaboration), Phys. Rev. D 84, 022004 (2011). Introduction

More information

Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT

Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT Vincent Bertin (CPPM) on behalf of Damien Dornic (CPPM) FCPPL meeting @ Marseille Marseille 25 May 2018 NEUTRINO AS COSMIC MESSENGER Neutrinos: smoking

More information

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande Neutrino oscillation physics potential of Hyper-Kamiokande on behalf of the Hyper-Kamiokande Collaboration Queen Mary University of London E-mail: l.cremonesi@qmul.ac.uk Hyper-Kamiokande (Hyper-K) is a

More information

Results from the OPERA experiment in the CNGS beam

Results from the OPERA experiment in the CNGS beam Results from the OPERA experiment in the CNGS beam A. Paoloni (INFN LNF) on behalf of the OPERA collaboration NUFACT 16 Quy Nhon, 3 August 16 14 physicists, 11 countries, 8 institutions The OPERA project

More information

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Dottorato di Ricerca in Fisica - XXVIII ciclo Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope Chiara Perrina Supervisor: Prof. Antonio Capone 25 th February 2014

More information

KM3NeT and Baikal-GVD New Northern Neutrino Telescopes

KM3NeT and Baikal-GVD New Northern Neutrino Telescopes KM3NeT and Baikal-GVD New Northern Neutrino Telescopes E. de Wolf Nikhef/University of Amsterdam VHEPU, 3-9 August 2014 ICISE, Quy Nhon, Vietnam KM3NeT and GVD New Northern Neutrino Telescopes Gigaton

More information

Earth WIMP search with IceCube. Jan Kunnen for the IceCube Collaboration

Earth WIMP search with IceCube. Jan Kunnen for the IceCube Collaboration Earth WIMP search with IceCube Jan Kunnen for the IceCube Collaboration 1 Outline 1. Indirect Earth WIMP detection with neutrinos I. how, II. status, III. theoretical predictions 2. The IceCube Neutrino

More information

Constraints on dark matter annihilation and decay from ν e cascades

Constraints on dark matter annihilation and decay from ν e cascades Constraints on dark matter annihilation and decay from ν e cascades Sourav Mandal (w/ Hitoshi Murayama) IPMU/UC-Berkeley sourav.mandal@berkeley.edu 2009/7/15 Cosmic rays observed by PAMELA/Fermi Figure:

More information

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Latest Results from the OPERA Experiment (and new Charge Reconstruction) Latest Results from the OPERA Experiment (and new Charge Reconstruction) on behalf of the OPERA Collaboration University of Hamburg Institute for Experimental Physics Overview The OPERA Experiment Oscillation

More information

Recent T2K results on CP violation in the lepton sector

Recent T2K results on CP violation in the lepton sector Recent T2K results on CP violation in the lepton sector presented by Per Jonsson Imperial College London On Behalf of the T2K Collaboration, December 14-20 2016, Fort Lauderdale, USA. Outline Neutrino

More information

Search for the Sources of High Energy Astrophysical Neutrinos with VERITAS

Search for the Sources of High Energy Astrophysical Neutrinos with VERITAS Search for the Sources of High Energy Astrophysical Neutrinos with VERITAS Ava Ghadimi CUNY Baccalaureate for Unique and Interdisciplinary Studies New York, NY Columbia University, Nevis Laboratories REU

More information

Neutrino Oscillation Tomography

Neutrino Oscillation Tomography 1 Neutrino Oscillation Tomography (and Neutrino Absorption Tomography) (and Neutrino Parametric-Refraction Tomography) Sanshiro Enomoto University of Washington CIDER Geoneutrino Working Group Meeting,

More information

Double bang flashes with IceCube

Double bang flashes with IceCube Double bang flashes with IceCube Lance Boyer, McNair Scholar The Pennsylvania State University McNair Faculty Research Advisor: Douglas Cowen, Ph.D Professor of Physics Department of Physics Eberly College

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory Gonzalo Parente Bermúdez Universidade de Santiago de Compostela & IGFAE for the Pierre Auger Collaboration Particle Physics and Cosmology

More information