Reference:W:\Lib\MathCAD\Default\defaults.mcd

Similar documents
Question 1 Equivalent Circuits

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Introduction to Laplace Transform Techniques in Circuit Analysis

ECE Linear Circuit Analysis II

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

MAE140 Linear Circuits Fall 2012 Final, December 13th

55:041 Electronic Circuits

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Lecture 6: Resonance II. Announcements

Lecture #9 Continuous time filter

Design of Digital Filters

ECEN620: Network Theory Broadband Circuit Design Fall 2018

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Sinusoidal Steady-State Analysis

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

FUNDAMENTALS OF POWER SYSTEMS

Digital Control System

The Measurement of DC Voltage Signal Using the UTI

5.5 Application of Frequency Response: Signal Filters

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

Lecture 4: R-L-C Circuits and Resonant Circuits

General Topology of a single stage microwave amplifier

Properties of Z-transform Transform 1 Linearity a

Massachusetts Institute of Technology Dynamics and Control II

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Op-Amp Circuits: Part 3

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

R-L-C Circuits and Resonant Circuits

Homework Assignment 08

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Section Induction motor drives

1. /25 2. /30 3. /25 4. /20 Total /100

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time

Modeling in the Frequency Domain

EE105 - Fall 2005 Microelectronic Devices and Circuits

Determination of the local contrast of interference fringe patterns using continuous wavelet transform

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

GATE SOLVED PAPER - EC

ME 375 FINAL EXAM Wednesday, May 6, 2009

Roadmap for Discrete-Time Signal Processing

online learning Unit Workbook 4 RLC Transients

EE247 Lecture 10. Switched-Capacitor Integrator C

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

Sinusoidal Response of RLC Circuits

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

Lecture 12 - Non-isolated DC-DC Buck Converter

The Operational Amplifier

Steady State Frequency Response Using Bode Plots

Lecture 5 Frequency Response of FIR Systems (III)

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

Lecture 5 Introduction to control

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

Lecture 10 Filtering: Applied Concepts

Chapter 10: Sinusoids and Phasors

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Sinusoidal Steady State Analysis (AC Analysis) Part II

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

EE221 Circuits II. Chapter 14 Frequency Response

Sampling and the Discrete Fourier Transform

Total No. of Questions :09] [Total No. of Pages : 03

Chapter 17 Amplifier Frequency Response

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE-202 Exam 1 January 31, Name: (Please print clearly.) CIRCLE YOUR DIVISION DeCarlo DeCarlo 7:30 MWF 1:30 TTH

R L R L L sl C L 1 sc

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Lecture 8 - SISO Loop Design

No-load And Blocked Rotor Test On An Induction Machine

Lecture 11 - AC Power

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Experiment Guide for RC Circuits

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

Homework Assignment No. 3 - Solutions

Chapter 2: Problem Solutions

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

Digital Control System

Induction Motor Drive

EE221 Circuits II. Chapter 14 Frequency Response

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

Lecture 37: Frequency response. Context

EE292: Fundamentals of ECE

Follow The Leader Architecture

Liquid cooling

Designing Circuits Synthesis - Lego

EE40 Midterm Review Prof. Nathan Cheung

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Transcription:

4/9/9 Page of 5 Reference:W:\Lib\MathCAD\Default\default.mcd. Objective a. Motivation. Finite circuit peed, e.g. amplifier - effect on ignal. E.g. how "fat" an amp do we need for audio? For video? For RF?. How do we characterize "fat"?. Check repone for "every poible" input i not practical. Solution: check repone for "repreentative ignal" that tand in for "every poible" ignal b. What i Frequency domain analyi?. Analyi technique. Not a new circuit element, it' applie to the circuit we already know. Widely ued in engineering (not jut circuit) - e.g. EE ++ - Underlying math: Laplace & Fourier tranform, (phaor). Analyi with inuoid. cacadable (hape retained). efficient: phaor analyi. univeral: Fourier analyi. Demo: http://www.faltad.com/fourier (live!) 3. Phaor / Laplace. Motivation: time domain diff eq, trigonometry: math problem a. Repreent inuoid with complex number b. Signal are not complex c. RC LPF example teady tate analyi d. Impedance, Admittance. RLC. generalized 4. Bode plot a. Ratio, db (why logarithmic) b. Bode plot c. Technique 5. Power (NR Ch ). intantaneou, average. rm. complex

4/9/9 Page of 5 Lecture 5: Sinuoidal Steady State (ee alo ppt) Motivation circuit 'deform' changing ignal e.g. digital ignal do not retain their "quare" hape amp alo cannot keep up with rapidly changing ignal (capacitor inide!) how determine e.g. if amplifier i fat enough? how do we even characterize how "fat" an amplifier i? what' a good metric? We don't want to deal at the component (chematic) level (not very hierarchical) Problem Example: RC LPF, (ideal) amp, RC HPF quare wave input (for implicity) "exponential" after LPF even more complicated waveform after HPF How to analyze thi??? Demo Concluion: inuoid retain hape --> modular!!! Sinuoidal Repone (AC analyi) Sinuoid: in or co amplitude frequency (f or omega) phae Initial tranient Example: RL HPF (ee NR text), calculate V R V m V input: f MHz ω π f v () t V m co ω t R 5kΩ L mh for t>, otherwie τ L R τ n T f KVL: olution: L di() t + R i() t v () t dt φ atan ω L R φ 5.488 v R_teady () t V m R R + ω L co ω t φ R R + ω L.63

4/9/9 Page 3 of 5 v R_tran () t V m R R + ω L co( φ) t τ e v R () t v R_tran () t + v R_teady () t.5 v () t v R_teady () t v R_tran () t v R () t.5 5. 7. 6.5. 6. 6.5. 6 t

4/9/9 Page 4 of 5 Lecture 6: Phaor Analyi technique:. efficiently analyze inuoidal teady tate repone. linear differential equation --> linear algebraic equation. ue complex number (ignal are real) Sinuoidal ignal: vt () V m co ω t + φ Phaor vt Re V m e j( ωt+ φ) Re V m e jφ e jωt Re V j ω V m e jφ Vjω ( e jωt ) abbreviation j ω - more compact equation without j - complex number how up in numeric reult - phaor analyi i pecial cae of Laplace tranform, --> conitency with other text on ubject Example: inductor diff eq analyi phaor analyi i L () t I Lm co ω t i L ( t) Re I L () e t d v L () t L t i d L() t L I Lm in ω t v L () t L d t Re I L() e t ReL I L () e t d v L ( t) Re V L () e t with V L () L I L () e.g. L mh I Lm ma f MHz ω π f j ω I L () I Lm V L () L I L () V L ( ) 6.83i V Impedance: Z L () V L () L I L () - univeral! Treat L, C like ''reitor" - complex number - unit: ohm! Admittance: Y L () I L () V L () L e.g. L L 6.83i kω 59.55i μs Let cla derive admittance of a capacitor.

4/9/9 Page 5 of 5 Lecture 7: Network analyi with phaor - KVL and KLC till hold (with phaor) - repreent ignal with phaor (complex number) - Retance become Impedance, generalizable to L, C! - Ditto Admittance - Generalized ohm-meter exit alo: LCR meter, impedance / network analyzer Z R R Z L L Z C C Example: calculate magnitude and phae oc, vc Z tot () Z R () + Z C () Z tot () R + C + R C C I c () V () V () Z tot () C C + R with V m V R kω C pf R C n τ R C V () V m I c () V () C + R C I c I c j π MHz I c 8.34 + 45.48i μa I c.53 ma KVL, KCL, node voltage, divider - whatever, we get: 57.858 arg I c V c () V () H () + R C V c () V () H () + R C + R C H a H j π MHz H a arg H a H a H j π MHz H a.998 arg H a H a H j π MHz H a.847 arg H a H a H j π MHz H a.57 arg H a H a H j π GHz H a.6 arg H a 3.595 3.4 8.957 89.88

4/9/9 Page 6 of 5 Lecture 8: Frequency Repone N i.. N f linrange( Hz, MHz, N) H jπ.5. 7 4. 7 6. 7 8. 7. 8 ( ) arg H jπ 5. 7 4. 7 6. 7 8. 7. 8 N i.. N f logrange( khz, GHz, N) H jπ... 5. 6. 7. 8. 9

4/9/9 Page 7 of 5 ( ) arg H jπ 5. 5. 6. 7. 8. 9 Logarithmic axi: - more informative:. Hz reolution at low frequencie, but not at GHz!. many procee are logarithmic (cf. octave) - for frequency - beware of label log f; uually the freq and not the log i pecified - amplitude - phae cale i alway linear Interpretation H ab ω phi ω + ω τ V in V v in ω, t V out ω V in H ab ( ω) v out ω, t atan( ω τ) V in co( ω t) 5 ( + phi ( ω) ) ω τ V out ( ω) co ω t v in ω, t v out ω, t.5.5 5. 8. 7.5. 7 t

4/9/9 Page 8 of 5 deci-bel - for power ratio e.g. P antenna μw - for voltage ratio e.g. V antenna P antenna R antenna.5.55i H j π MHz db db( ) 6. db( r) log r P ref mw V ref P ref R antenna db( r) log r db( ) db(.5) 6. db P antenna P ref db P antenna P ref ( ) 6.7 db H j π MHz db db V antenna log V antenna V V ref ref db( ) 6. 3 db (dbm) db N i.. N f logrange( khz, GHz, N) ( ) db H jπ 4. 5. 6. 7. 8. 9 ( ) arg H jπ 5. 5. 6. 7. 8. 9 Contruct Bode-plot (ingle pole) from equation. Pole. 3dB Bandwidth. Filter LPF, HPF, BPF, BNF ideal, practical (approximate hape)

4/9/9 Page 9 of 5 Example: PWM DAC V dac D dac V ref wort cae ripple for.. 55 D dac 56 T t t D dac T (5% duty cycle) (time when Vout Vref) V ref V ω π MHz v out () t v () t V ref + V ref π V ref π in ω t n in ( n + ) ω t n + v 3 () t V ref π in 3 ω t 3 V ref t t.5 v out () t v () t v 3 () t.5. 7 4. 7 6. 7 8. 7. 6.. 6.4. 6 t Goal: amplitude of ripple < r*vref r % Ripple dominated by v V ref A π A.637 V ref < r Attenuation required a A V ref r a 6.366 db( a) 6.78 db a) graphical olution (from Bode diagram, determine wp /RC from w and a) b) algebraic Hj ( ω ) a + ω R C a RC ω C nf R RC. μ RC R. kω C

4/9/9 Page of 5 Pole of RC LPF: ω p RC uc output: RC LPF: v () t H f ( f, ) V ref ω p π Im V ref + π + ω f 59.54 khz f n e j( n + ) ω t n + ω p f.59 ω Filter output: v o ( tf, ) v n tn, V ref Im V ref π Im V ref + π n H f j ( n + ) ω, f H f j ( n + ) ω, f e j( n + ) ω t n + e j( n + ) ω t n + v () t v o ( t, ) v o ( t,.5) v o ( tf, ).5 v n ( t, ) v n ( t, ). 7 4. 7 6. 7 8. 7. 6.. 6.4. 6 t

4/9/9 Page of 5 Lecture 9: Bode Plot C R V x + + V in R C V out - - Given V x V in C. + V x R. V x V out + R V out V x + V out C R Find( V x, V out ) C. R. volt C. R. + C R C. R. + C. R. R C + + C R + R. C volt C. R. + C. R. R C + + C R + R. C e.g. f Hz f MHz ω p π f ω p π f R kω R kω C π f R C π f R C 5.95 nf C.6 nf Given Find( ω p, ω p ) H () + R C + R C + R C + R R C C + + R C ω p 99.899 +.583i 6. 7 + ω p + Hz π R C + ω p ω p ω p + ω p ω p ω p Pole plitting: wp << wp H () R C + R C + R C + R C + R R C C H () + R C ω p + ω p

4/9/9 Page of 5 Bode Plot N i.. N f logrange 3dB bandwidth f, f, N ( ) db H iπ 4. 3. 4. 5. 6. 7. 8. 9 9 45 ( ) arg H iπ 45 9. 3. 4. 5. 6. 7. 8. 9 Bandpa characteritic: reject low and high frequency, pae mid-band Bode plot capture ignificant information about behavior of circuit. Need efficient way to contruct and draw them. Application: Phone Bapand from 3Hz... 3kHz

4/9/9 Page 3 of 5 Lecture 3: Contructing Bode Plot Tranfer function: H () N () D () Need root of N (zero of H) and root of D (pole of H) for Bode Plot. Zero and pole capture many important characteritic of ytem (ee other coure). Then rewrite H() with pole and zero explicitly:. Standard form H () K r m n z m p n z m zero of H() p n pole of H(). Magnitude repone db( H( j ω) ) H m ω log( K ) H m ω log K r m n z m p n j ω + r log( ω) + m 3. Phae repone n log + j log + j ω z m ω z n um individual term (thank to log!) + r 9 φω ( ) + m φ j ω z m n φ j ω p n um individual term

4/9/9 Page 4 of 5 Example : R kω C pf H () + R C K p K p R C p f π f.59 4 khz Magnitude repone: H m ω log j ω p H m ω log + ω p for ω<<p : H m_low ( ω) for ω>>p : at ωp : H m_high ω 3. H m p log ω p N i.. N f logrange f, f, N 3-dB frequency f 3dB H m_low π H m_high π H m π 4 6 db per decade rolloff 8. 4. 5. 6. 7. 8. 9.. Straight line approximation: line interect at p /π

4/9/9 Page 5 of 5 Phae repone: arg φω j ω φω p atan ω p 5 3 φ π 45 6 75 9. 4. 5. 6. 7. 8. 9.. Straight line approximation: 9 over decade, -45 @ f Example : H () H m ω K K π Hz K ω N i.. N f logrange( Hz, khz, N) 4 ( ) db H m π ( ) arg H iπ 4 6 8. 3. 4. 5

4/9/9 Page 6 of 5 Example 3: H () R C + R C + R C + R C + R R C C Find root of denominator: + R C + R C + R C + R R C C a R R C C a.533 C R V x + + V in R C V out - - b R C + R C + R C b.593 3 b + b 4 a p p f f 99.9 Hz a π b b 4 a p p f f. MHz a π check root: D () + R C + R C + R C + R R C C.694 Dp hould be (nearly) zero.9 Dp tandard form: H () R C p p r K R C H () R C π R C Hz H () p H 3 () p N 3 i.. N f logrange f, 9 f, N

4/9/9 Page 7 of 5 4 ( ) db H iπ ( ) db H iπ ( ) db H 3 iπ ( ) db H iπ 4 6 8. 3. 4. 5. 6. 7. 8. 9. 8 ( ) arg H iπ ( ) arg H iπ ( ) arg H 3 iπ ( ) arg H iπ 6 6 8. 3. 4. 5. 6. 7. 8. 9.

4/9/9 Page 8 of 5 Lecture 3: Power Reitive load V V f 6Hz v () t V co ω t p () t ω π f v () t R R Ω T f v () t p () t...3 t T P rm p () t dt T T T ( v () t ) R dt V rm R T V rm T ( V co( ω t) ) dt V V V rm V rm P rm R Capacitive Load farad d C i () t C t v () t ω d p () t v () t i () t P rm.5 W v () t i () t p () t.5..5..5.3 t

4/9/9 Page 9 of 5 Power Analyi V V I.7A φ 7 Phae: φ Δφ φ v φ i v () t V co ω t i () t I co ω t φ p a () t V I co ω t φ co ω t after ome work... p b () t V I ( + co( ω t) ) co φ + in φ in( ω t) v () t i () t p b () t.5.5.5..5..5.3 t Nomenclature V I Average (real) power: P co( φ ) power factor pf co( φ ) pf.34 V I Reactive power: Q in( φ ) rf in( φ ) rf.94 pf + rf p () t P ( + co( ω t) ) + Q in( ω t) a) Purely reitive circuit V I φ P Q [W] P 35 mw Actually diipated in load (ha a w ripple on top of average). b) Purely reactive circuit V I φ 9 P Q [VAR] Q 35 mw Average i zero. Only heat wire (which add a reitive component).

4/9/9 Page of 5 Complex Power Efficient way to calculate P & Q. Complex power: S P + j Q [VA] Apparent power: S P + Q [VA] Power handling capacity of ditribution network (e.g. power cord). S ()... ome math... V () I () (complex conjugate of current) Example : computer upply R // C V V V 55.563 V f 6Hz ω π f R R kω C μf Z () drop at high freq!!! + R C V () V () V I () increae at high frequency! Z () S () V () I () S ( Hz). W only reitive part matter VA W mva mw. 9.3i S j ω VA S ( j ω ) 9.3 VA (!!!) ( ). W Re S j ω V ( j ω ) 55.563 V Im S j ω I j ω ( ) 9.3.83 A VAR (!!!) kva kw VAR W V ( Hz) R 55.563 ma Current dominated by reactive part

4/9/9 Page of 5 Example : loudpeaker with(out) erie capacitor V dc 5V 8Ω L ω Z () R + L V V L.894 mh I () f 44Hz V Z () R Ω ω π f S () V I () S ( Hz) VA jut heat peaker! (nobody can hear DC) 3.769 46.54i S j ω + mva audio power i much maller (than heat) with erie capacitor: C 5mF Z c () R + L + C I c () V Z c () S c () V I c () VA S c j Hz no heat (DC term) 3.35 48.33i S c j ω + mva ame a w/o C! N 3 i.. N f logrange( Hz, khz, N) Z jπ Z c jπ. 3 S jπ S c jπ.. 3

4/9/9 Page of 5 Example 3: correcting the power factor (zero reactive power) V V Inductive load ω π 6Hz Z L 4Ω + j Ω without correction: V S a Z L S a 484 + 4i VA V I a Z L I a 3..556i A I a 3.479 A with correction: Y c Im Z L Z L Z c Z tot Z L + Z c V S b Z tot Z c Y c j Z tot 5 Ω S b 484 VA Z c i Ω capacitor! Example 4: voltage drop in inductive power upply wiring (model current a inuoid at f)

4/9/9 Page 3 of 5 Lecture 3: Finite Opamp Bandwidth Model: a () ω b a ajω b like ideal opamp Note: can model finite gain and bw imultaneouly - more complicated math - rather ue uperpoition for mall error (ytem linear) Given V x V. V x V + R. R. ω b V V x A () V () V () ω b R ( R + R ) + R ω b Find( V, V x ) ω b R. R. V. V. R. + R. + ω b R. R. + R. + ω b R. A () R A o R R + R + ω b R + + A o ω b + A o ω p ω p ω b + A o AA, o, f p + A o A o + π f p ( ) 6.556 db A j π khz,, MHz db N 3 i.. N f logrange( Hz, MHz, N) 4 ( ) ( (,, MHz) ) ( (,, MHz) ) db A jπ,, MHz db A j π db A j π. 3. 4. 5. 6. 7

4/9/9 Page 4 of 5 Lecture 33: Electronic Noie Digital: finite # bit limit reolution Analog: many error, interference etc --> hield or ue other method to reduce ultimate: finite charge of electron Lecture 34: Filter Example: Sampling.8.6.4 Amplitude [V]. -. -.4 -.6 -.8-3 4 5 6 7 8 Time [] x -4 Show pectrum onput ignal and alia. Sampling theorem: frequencie > f/ alia --> filter out! f 44.kHz B khz ω p π B 3dB bandwidth H () Hj π + ω p f.67 db H j π f 3.455

4/9/9 Page 5 of 5 http://www.maxim-ic.com/appnote.cfm/an_pk/76 ee alo MAX 74/5 Sallen Key: H () + τ + τ Given Find() + τ + τ + i 3 τ i 3 τ