this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

Similar documents
under the curve in the first quadrant.

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Strategies for the AP Calculus Exam

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

MTH 146 Class 7 Notes

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

Mathematically, integration is just finding the area under a curve from one point to another. It is b

The definite Riemann integral

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

UNIT I. Definition and existence of Riemann-Stieltjes

ME 501A Seminar in Engineering Analysis Page 1

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

The z-transform. LTI System description. Prof. Siripong Potisuk

Integration by Parts for D K

6.6 Moments and Centers of Mass

Limit of a function:

Sequences and summations

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Available online through

CS321. Numerical Analysis

Chapter 12-b Integral Calculus - Extra

Calculus Summary Sheet

Numerical differentiation (Finite difference)

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter Simpson s 1/3 Rule of Integration. ( x)

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

AP Calculus AB AP Review

The Reimann Integral is a formal limit definition of a definite integral

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

EVALUATING DEFINITE INTEGRALS

Chapter 7. Bounds for weighted sums of Random Variables

5.1 - Areas and Distances

Chapter 2: Probability and Statistics

Application: Work. 8.1 What is Work?

Important Facts You Need To Know/Review:

Chapter 4: Distributions

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Itō Calculus (An Abridged Overview)

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Approximate Integration

24 Concept of wave function. x 2. Ae is finite everywhere in space.

Mathematics HL and further mathematics HL formula booklet

Recall from the previous lecture: Extreme Value Theorem Suppose a real-valued function f( x1,, x n. ) is continuous on a closed and bounded

Numerical Differentiation and Integration

On Several Inequalities Deduced Using a Power Series Approach

( ) dx ; f ( x ) is height and Δx is

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

ICS141: Discrete Mathematics for Computer Science I

Chapter Linear Regression

General properties of definite integrals

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

Module 2: Introduction to Numerical Analysis

Numerical Analysis Topic 4: Least Squares Curve Fitting

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Fundamental Theorem of Calculus

f ( x) ( ) dx =

Mathematics HL and further mathematics HL formula booklet

CS321. Numerical Analysis

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

The Basic Properties of the Integral

Mathematical Notation Math Calculus & Analytic Geometry I

Preliminary Examinations: Upper V Mathematics Paper 1

Multiplicative Versions of Infinitesimal Calculus

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Introduction to mathematical Statistics

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

On a class of analytic functions defined by Ruscheweyh derivative

C.11 Bang-bang Control

Graphing Review Part 3: Polynomials

CHAPTER 5 Vectors and Vector Space

Integration. Table of contents

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Mathematics HL and further mathematics HL formula booklet

Solutions Manual for Polymer Science and Technology Third Edition

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Mu Sequences/Series Solutions National Convention 2014

Riemann Integral and Bounded function. Ng Tze Beng

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Objective Mathematics

Review Exam II Complex Analysis

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL

1.3 Continuous Functions and Riemann Sums

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

Linear Algebra Concepts

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Pre-Calculus - Chapter 3 Sections Notes

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Review of the Riemann Integral

Transcription:

Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow s tegrto. Defto of Atervtve: A fucto F s tervtve of f o tervl I f F ( x) for ll x I. Represetto of Atervtves: If F s tervtve of f o tervl I, the G s tervtve of f o the tervl I f oly f G s of the form G(x) F(x) +, for ll x I where s costt. G(x) F(x) + s clle fmly of tervtves or geerl tervtve. s clle the costt of tegrto G s lso kow s the soluto to the fferetl equto A fferetl equto x y s equto tht volves x, y, ervtves of y. Ex: F the geerl soluto of the fferetl equto y Notto for Atervtves The process of fg tervtves s clle tfferetto or efte tegrto s eote y tegrl sg: y So from y usg tegrto o oth ses of the equto ths s the efte tegrl y F( x) + Sce tegrto s the reverse of fferetto we c check the F ( x ) + f ( x ) prevous y [ ] If you kow your ervtve rules the lerg your tegrto rules shoul e very esy! Just work ckwrs.

Bsc Itegrto Rules: Dfferetto Formul Itegrto Formul [ ] 0 0 [ ] k k kx+ [ ( )] kf ( x ) k k [ f ( x ) ± g ( x )] f ( x ) ± g ( x ) [ ± g( x)] ± g( x) + [ x ] x x x + + s x cos x cos x s x t x sec x sec x sec xt x cot x csc x csc x csc xcot x cos s Ex:. 3x. 3 c. x x f. ( x+ ) g. 4 3 x 5 x + x ) h. sec x s x+ x cos x+ x t x+ sec xt x sec x+ csc x cot x+ csc xcot x csc x+. s x e. x+ s x. x cos x

Are: Ojectve: Use sgm otto to wrte evlute sum. Uerst the cocept of re. Approxmte the re of ple rego. F the re of ple rego usg lmts. Sgm Notto: The sum of terms,, 3,, s wrtte s + + +... + 3 where s the ex of summto, s the th term of the sum, the upper lower ous of summto re. Ex:. 6. Propertes of Summtos:. k k Summto Formuls:. c c 3. Ex: Evlute ( k + ) c. x k ( + )( + ) 6 +. ( ± ) ±. 4. ( + ) 3 ( + ) 4 for 0, 00, 000, 0000 Are of Ple Rego Use fve rectgles to f two pproxmtos of the re of the rego lyg etwee the grph of x the x-xs etwee x 0 x. Rectgles outse the curve re clle crcumscre rectgles the sum of the res s clle the upper sum.

Rectgles se the curve re clle scre rectgles the sum of the res s clle the lower sum. For y rego uer curve f oue y the x xs etwee x x. () The left e of the rectgle touches the curve () The rght e of the rectgle touches the curve where x, s the umer of sutervls f (m ) f( + ( ) x) f(m ) f ( + ( ) x) f( m) x f( M ) x f the fucto cresg or ecresg wll chge whether () or () re upper or lower sums f (m ) s upper sum f f s ecresg lower f f s cresg f(m ) s lower sum f f s ecresg upper f f s cresg Lmts of the Lower Upper Sums: Let f e cotuous oegtve o the tervl [,]. The lmts s of oth the lower upper sums exsts re equl to ech other. Defto of the Are of Rego the Ple: Let f e cotuous oegtve o the tervl [,]. The re of the rego oue y the grph of f, the x-xs, the vertcl les x x s Are lm f( c) x, x < c < x let c + x Ex: F the re of the rego oue y the grph x xs, the vertcl les x 0 x. 3 x, the

Rem Sums Defte Itegrls Ojectve: Uerst the efto of Rem sum. Evlute efte tegrl usg lmts. Evlute efte tegrl usg propertes of efte tegrls. Defto of Rem Sum: Let f e efe o the close tervl [,], let e prtto of [,] gve y x 0 < x < x < < x < x where x s the wth of the th sutervl. If c s y pot the th sutervl, the the sum f( c) x, x < c < x s clle the Rem Sum of f for the prtto Defto of Defte Itegrl: If f s efe o the close tervl [,] the lmt lm f( c) x exsts, the f s tegrle o [,] the lmt s eote y lm f( c) x The lmt s clle the efte tegrl of f from to. The umer s the lower lmt of tegrto the umer the upper lmt of tegrto. Notce the smlrtes etwee the efte tegrl the efte tegrl. Eve though they re smlr there s mjor fferece the efte tegrl results umer the efte tegrl results fmly of fuctos. Ex: Evlute the efte tegrl x rememer x x c + ( x) otuty Imples Itegrlty: If fucto f s cotuous o the close tervl [,], the f s tegrle o [,].

The Defte Itegrl s the Are of Rego: If f s cotuous oegtve o the close tervl [,], the the re of the rego oue y the grph of f, the x-xs, the vertcl les x x s gve y Are Ex: Sketch the rego correspog to the efte tegrl: 3 Deftos of Two Specl Itegrls: z. If f f efe t x, the we efe 0. If f s tegrle o [,], the we efe z z Atve Itervl Property: If f s tegrle o the three close tervls [,c],[c,], [,] the, z z +z c c Propertes of Defte Itegrls: If f g re tegrle o [,] k s costt, the the fuctos of kf f ± g re tegrle o [,], z. k kz. [ g( x)] g( x) z ± z ±z The Fumetl Theorem of lculus Ojectve: Evlute efte tegrl usg the Fumetl Theorem of lculus. Uerst use the Me Vlue Theorem for Itegrls. F the verge vlue of fucto over close tervl. Uerst use the Seco Fumetl Theorem of lculus. We hve looke t two mjor rches of clculus: fferetl clc (tget le prolem) tegrl clc. (re prolem). Eve though the two seem urelte there s coecto clle the Fumetl Theorem of lculus. 4 The Fumetl Theorem of lculus If fucto f s cotuous o the close tervl [,] F s tervtve of f o the tervl [,], the f ( x ) F ( ) F ( )

Usg the Fumetl Theorem of lculus. Prove you c f tervtve of f, you ow hve wy to evlute efte tegrl wthout hvg to use the lmt of sum.. Whe pplyg the fumetl Theorem of lculus, the followg otto s coveet. ] F( x) F( ) F( ) 3. It s ot ecessry to clue costt of tegrto the tervtve ecuse f ( x ) F ( x ) + Ex: Evlute ech efte tegrl [ ] [ F( ) + ] [ F( ) + ] F( ) F( ). ( x 3) 4. x c. sec x. x 0 0 Ex: F the re of the rego oue y the grph of y x 3x+, the x-xs, the vertcl les x 0 x. The Seco Fumetl Theorem of lculus: If f s cotuous o ope tervl I cotg, the, for every x the tervl, x f() t t Ex: Evlute x cos tt 0 Itegrto y Susttuto Ojectve: Use ptter recogto to f efte tegrl. Use chge of vrles to f efte tegrl. Use the Geerl Power Rule for Itegrto to f efte tegrl. Use chge of vrles to evlute efte tegrl. Evlute efte tegrl volvg eve or o fucto Ptter Recogto: We wll look t tegrtg composto fuctos two wys ptter recogto chge of vrles. Rememer the h Rule: [ ] π/4 f( g( x)) f ( g( x)) g ( x)

At-fferetto of omposte Fucto: Let g e fucto whose rge s tervl I, let f e fucto tht s cotuous o I, If g s fferetle o ts om F s tervtve of f o I, the f( g( x)) g ( x) F( g( x)) + If u g( x) the u g ( x) f( u) u F( u) + Recogze the ptters tht the followg ft f( g( x)) g ( x) Ex:.. 4 3 x( x + ). 3 x x + c. ( x + ) x e. 5cos 5x f. sec (t + 3) x x x( x + ) Mkg hge of Vrles. hoose susttuto u g(x). Usully, t s est to choose the er prt of composte fucto, such s qutty rse to power.. ompute u g ( x) 3. Rewrte the tegrl o terms of the vrle u. 4. F the resultg tegrl terms of u. 5. Replce u y g(x) to ot tervtve terms of x. 6. heck your swer y fferettg. Ex:. x. x x c. s 3xcos3x Geerl Power Rule for Itegrto: If g s fferetle fucto of x, the + [ ( )] g x [ ] Equvletly, f u g(x), the g( x) g ( x) +, + + u u u +, + Ex:. 4 3(3x ). 4x e. ( x ). ( x + )( x + x ) c. cos xs x 3 3 x x

hge of Vrles for Defte Itegrls If the fucto u g(x) hs cotuous ervtve o the close tervl [,] f s cotuous o the rge of g, the g( ) f( g( x)) g ( x) f( u) u g( ) Ex:. 3 x( x + ). 0 5 x x