Synthesis of Tethered Chromium Carbene Complexes

Similar documents
Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Cole Curtis, Chemistry 213. Synthetic #1 FFR. Synthesis and Characterization of 4-methoxychalcone

Supplementary Information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Synthesis of γ-lactams from the Spontaneous Ring Expansion of β-lactams. Second-Semester Student

Methyl Migration to Coordinated CO

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

Supporting Information

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions

Chemistry 283g Experiment 4

CO 2 and CO activation

CHEMISTRY 263 HOME WORK

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Supporting Information for. Synthesis of Ferrocene-Functionalized Monomers for Biodegradable. Polymer Formation

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Supplementary Information. Mapping the Transmission Function of Single-Molecule Junctions

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

1 Answer. 2 Answer A B C D

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

molecules ISSN

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

Supporting Information for: Anhydrous Tetrabutylammonium Fluoride. Haoran Sun, Stephen G. DiMagno*

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

CO 2 and CO activation

Supporting Information for:

Experiment : Reduction of Ethyl Acetoacetate

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Honors Cup Synthetic Proposal

Chem 263 March 7, 2006

SUPPORTING INFORMATION

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

KOT 222 Organic Chemistry II

Organolithium Compounds *

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Supporting Information

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Chapter 9 Aldehydes and Ketones Excluded Sections:

Supporting Information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

CHEM 344 Fall 2015 Final Exam (100 pts)

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Supporting Information For:

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Supporting Information

An improved preparation of isatins from indoles

Supporting Information

Supporting Information:

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Experimental details

ζ ε δ γ β α α β γ δ ε ζ

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Working with Hazardous Chemicals

Evidence for an HX-Reductive-Elimination Pathway

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Carboxylic Acids O R C + H + O - Chemistry 618B

An Aldol Condensation to synthesize Chalcones. By: Blake Burger FFR#3

Preparation and ring-opening reactions of N- diphenylphosphinyl vinyl aziridines

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Information for: Phosphonates

Atovaquone: An Antipneumocystic Agent

Supporting Information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Chapter 20: Carboxylic Acids

How to build and race a fast nanocar Synthesis Information

Organometallic Compounds of Magnesium *

Advanced Pharmaceutical Analysis

CHEM 251 (4 credits): Description

Supporting Information

Kinetic Isotope Effects

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials

Electronic Supplementary Information

Review Experiments Formation of Polymers Reduction of Vanillin

Chemistry 283g- Experiment 3

Supporting Information

Green Chemistry in the Undergraduate Organic Laboratory: Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay

Supporting Information for

Supporting Information. Stable Dioxetane Precursors as Highly Selective. for Singlet Oxygen

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful?

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

CARBOXYLIC ACIDS AND THEIR DERIVATIVES

Permeable Silica Shell through Surface-Protected Etching

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Transcription:

SYNTHESIS OF TETHERED CHROMIUM CARBENE COMPLEXES 375 Synthesis of Tethered Chromium Carbene Complexes Nicole S. Lueck Faculty Sponsor: Curtis Czerwinski, Department of Chemistry ABSTRACT Hydroxycarbene complexes have been proposed as intermediates in industrial processes such as the Fischer-Tropsch process and hydroformylation. We are developing a general method for the synthesis of hydroxycarbenes utilizing tetramethylammonium ion precursors. Specifically we report here the reaction of a biphenyl lithium reagent with chromium hexacarbonyl to give a pentacarbonyl chromium Fischer carbene complex that was isolated as its air-stable tetramethylammonium salt. Prolonged heating led to the formation of the tetramethylammonium precursor of an aryl-tethered dicarbonyl Fischer carbene complex suitable for further functionalization to form tethered alkoxy- or hydroxycarbene derivatives. INTRODUCTION The Fischer-Tropsch process combines hydrogen gas and carbon monoxide over a metal or organometallic catalyst to form long chains of bonded carbon atoms, including materials such as gasoline and diesel fuel. Controlling exactly which molecules are formed as major products is one of the main problems in this process. Hydroxycarbenes are thought to be intermediates in the Fischer-Tropsch process. Hydroformylation is an industrial process, catalyzed by organometallic molecules, for converting alkenes in to more complex aldehydes. These aldehydes can then be used in the synthesis of larger, industrially useful molecules. A major problem associated with hydroformylation is the conversion of alkene starting materials into undesirable products through competing side reactions. Acyl hydrides are proposed intermediates in the hydroformylation process. While most hydroxycarbenes and acyl hydrides that have been synthesized are stable for only short periods of time, a recent report on the synthesis of a hydroxycarbene complex has suggested that incorporation of an alkyl tether between the carbene carbon and another ligand in the complex can stabilize the structure allowing it to undergo slow transformation to its isomeric acyl hydride complex, which is also stabilized by the alkyl tether (Figure 1.) 1 Hydroxycarbene Acyl hydride Figure 1: Equilibrium between rhenium hydroxycarbene complex and rhenium acyl hydride complex

376 LUECK This equilibrium is thought to exist due to strain in the hydroxycarbene, introduced by the tether, that can be relieved by rearrangement to the acyl hydride form. This equilibrium could account for some of the problems associated with the hydroformylation and Fischer-Tropsch processes. The overall goal of the current project was to develop a synthetic path for the creation of molecules exhibiting this equilibrium. If knowledge can be gained about how to control the equilibrium, it is hoped the principles can be applied to the hydroformylation and Fischer-Tropsch processes to improve efficiency and increase yield. RESULTS AND DISCUSSION Two synthetic pathways were investigated using chromium in place of rhenium since it is somewhat cheaper and was expected to be more air-stable. Pathway A (Figure 2) is the route through which the tethered rhenium molecules were made. This synthesis has progressed to the tosylate stage (structure 2) where it currently remains. NMR spectroscopy of the solid formed at this stage is inconclusive. Either the synthesis failed at this stage or some of the desired product was made but the purification techniques used were not sufficient to isolate the product for characterization through NMR spectroscopy. Extreme air-sensitivity of the molecules and intermediates formed, as well as side reactions that can occur if a 78 C temperature is not strictly maintained during the addition of n-butyllithium may account for failure of this synthetic route. Further work for this synthesis includes the development of better purification techniques as well as better methods of temperature regulation. The second pathway investigated for the synthesis of tethered hydroxycarbenes was developed from a pathway reported by Merlic for the synthesis of methoxycarbene 11, which was repeated during this study to demonstrate the effectiveness of the overall method. 2 This synthesis was altered to create hydroxycarbenes by going through a tetramethylammonium Figure 2: Pathway A for the synthesis of tethered hydroxycarbenes.

SYNTHESIS OF TETHERED CHROMIUM CARBENE COMPLEXES 377 intermediate.3 Pathway B has progressed as far as the untethered tetramethylammonium salt 12. During reflux, the ring attachment and loss of carbonyls (CO) can be monitored via IR spectroscopy. As the ring attaches to the chromium, electron density is increased on the metal. Some of this added electron density is shifted onto the two remaining carbonyls resulting in lower frequency stretching, measured by IR spectroscopy. An IR spectrum indicating the formation of the desired tethered dicarbonyl carbene 13 from untethered pentacarbonyl carbene 12 would contain two stretching bands (characteristic of dicarbonyls) at lower frequency than the original carbonyl bands for 12. Figure 3: Pathway B for the synthesis of tethered hydroxycarbenes. After refluxing 12 in THF for 24 h the IR spectrum showed the appearance of two carbonyl stretches at lower frequencies than the original carbonyl stretches, as expected, indicating the tethered product was forming. After 48 h of reflux, the lower frequency carbonyl stretches were absent and a precipitate had formed. These results indicate that either the precipitate is the desired tethered tetramethylammonium intermediate or, reflux was continued too long and any tethered product formed decomposed into starting materials. IR spectroscopy of the precipitate showed carbonyl stretches at the same frequency of those in untethered 12. This indicates formation of tethered carbene 13 was unsuccessful. NMR spectroscopy of the precipitate was inconclusive due to low solubility. Future work for this pathway includes repetition with closer monitoring of reflux via IR spectroscopy. CONCLUSIONS Air sensitivity and time constraints were the major problems associated with this project. All work was done on a Schlenk line using air-sensitive techniques, but it is difficult at best to completely prevent all contamination and these molecules and intermediates are

378 LUECK quick to decompose. With time constraints, it was sometimes difficult to characterize and use the molecules and intermediates before they had decomposed. With further work and technique refinement to combat some of the problems associated with these syntheses, both Pathways A and B have the potential to successfully construct tethered hydroxycarbenes. Pathway B appears to be more promising as transient formation of the tethered intermediate was actually achieved. Pathway B also has the advantage of intermediates and products with greater air stability than Pathway A, and the aryl tether may allow for addition of electron donating or withdrawing groups to probe electronic effects in the hydroxycarbene-acyl hydride equilibrium. EXPERIMENTAL All reactions were carried out under nitrogen using standard schlenk line techniques. Diethyl ether and tetrahydrofuran were disilled from sodium bezophenone ketyl under nitrogen. All other reagents were used as received. Infrared spectra were recorded on a Midac PRS-102 Infrared Spectrometer. [(1,1 -Biphenyl-2-yl)methoxymethylene]pentacarbonylchromium (10). A 1.7 M pentane solution of tert-butyllithium (2 ml, 3.4mmol) was added to a solution of 2-bromobiphenyl (0.2956 g, 1.27 mmol) in ether (20 ml), and the milky solution was stirred for 1 h at 78 C and then 0.5 h at 0 C. The resulting yellow solution was transferred via syringe to a solution of chromium hexacarbonyl (0.3613 g, 1.64 mmol) in ether (20 ml) at room temperature. The yellow orange solution was stirred for 0.5 h after complete addition and then cooled to 0 C. A saturated aqueous sodium bicarbonate solution was added (2 ml) to the dark orange-red solution turning the mixture pumpkin-orange and forming a precipitate. After rapid addition of methyl triflate (0.20 ml, 1.77 mmol) the reddish-brown mixture was stirred at room temperature for 0.5 h during which time the precipitate went into solution. The reaction was quenched with saturated aqueous sodium bicarbonate solution (10 ml) and saturated aqueous potassium carbonate solution (5 ml). The organic layer was separated and the solvents were removed under vacuum. Silica gel column chromatography (95:5 hexane:ethyl acetate) gave 10 as a broad red-orange band (0.355 g, 72 %.) IR (THF; CO only): 2063 (w), 1948 (vs) cm -1. {[(1,2,3,4,5,6 -η)-1,1 -Biphenyl-2-yl]methoxymethylene}-dicarbonyl-chromium (11) A solution of 10 in THF was refluxed for 24 h. Solvent was removed under vacuum. Since this synthesis was performed only to prove competency in the method, purification was not performed and yield was not determined. IR (THF; CO only): 1911, 1850 cm -1. Tetramethylammonium salt (12) A 1.7 M pentane solution of tert-butyllithium (5 ml, 8.5 mmol) was added to a solution of 2-bromobiphenyl (1.0344 g, 4.44 mmol) in ether (20 ml), and the milky solution was stirred for 1 h at 78 C and 0.5 h at 0 C. The resulting yellow solution was transferred via syringe to a solution of chromium hexacarbonyl (1.0863 g, 4.94 mmol) in ether (20 ml) at room temperature. The solution was stirred for 0.5 h after complete addition. Solvent was removed under vacuum leaving 5 ml behind to which water was added (15 ml). An aqueous tetramethylammonium chloride solution was added until yellow-orange precipitate ceased to

SYNTHESIS OF TETHERED CHROMIUM CARBENE COMPLEXES 379 form4. Methylene chloride (10 ml) was added to the solution dissolving the precipitate. The organic layer was drawn off and solvent removed under vacuum yielding 1.27 g (64%) of crude product. IR (THF; CO only): 2031 (sh), 2032 (sh), 1977 (vs), 1904 (vs), 1879 (sh) cm -1. Tethered tetramethylammonium salt (13) A solution of complex (3) (1.27 g) was refluxed in THF (20 ml) for 48 h, a black precipitate began to form after 24 h. Solvent was removed under vacuum. IR (THF; after 24 h reflux; CO only): 1979 (vs), 1941 (s), 1907 (s), 1858 (m) cm -1. IR (THF; after 48 h reflux; CO only): 1979 (vs), 1895 (vs) 1778 (m), 1725 (s) cm -1. IR (KBr pellet; precipitate; CO only): 1964 (m), 1186 (m) cm -1. REFERENCES 1. Casey, C. P.; Czerwinski, C. J.; Hayashi, R. K. J. Am. Chem. Soc., 1995, 117, 4189. 2. Merlic, C. A.; Xu, D.; Khan, S. I. Organometallics, 1992, 11, 412-418. 3. Fischer, E. O.; Maasbol, A. Chem. Ber., 1967, 100, 2445-2456. ACKNOWLEDGEMENTS University of Wisconsin-La Crosse College of Science and Allied Health University of Wisconsin-La Crosse Chemistry Department University of Wisconsin-La Crosse Undergraduate Research Grant Program

380