Advanced oxidation of organic pollutants in air non-thermal plasmas

Similar documents
ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Mass Spectrometry. Electron Ionization and Chemical Ionization

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Mass Spectrometry in MCAL

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Ozone Formation in Coastal Urban Atmospheres: The Role of Anthropogenic Sources of Chlorine

Influence of water vapour on acetaldehyde removal efficiency by DBD

Tropospheric OH chemistry

Chapter 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

M M e M M H M M H. Ion Sources

ELECTRON BEAM AND PULSED CORONA PROCESSING OF VOLATILE ORGANIC COMPOUNDS AND NITROGEN OXIDES

Mass Spectrometry (MS)

Electron beam and pulsed corona processing of volatile organic compounds in gas streams

Extrel Application Note

Welcome to Organic Chemistry II

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Skoog/Holler/Crouch Chapter 19 Principles of Instrumental Analysis, 6th ed. CHAPTER 19

1) In what pressure range are mass spectrometers normally operated?

pinene (at 2 and 50 Torr) and β-pinene (at 200 Torr) with OH have been determined in varied conditions.

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Photolysis of Butenedial and 4-Oxo-2-pentenal Under Atmospheric Conditions

Molecular Mass Spectrometry

Electric Field Measurements in Atmospheric Pressure Electric Discharges

ATMOSPHERIC CHEMISTRY OF ALKANES RECENT DEVELOPMENTS

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

Organic Compound Identification Using Infrared Spectroscopy. Description

Fourier Transform Infrared Spectrometry Prelab Last modified: June 17, 2014

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE

Spectroscopy Problem Set February 22, 2018

TANDEM MASS SPECTROSCOPY

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

MS/MS .LQGVRI0606([SHULPHQWV

CHAPTER 24 Organic Chemistry

Infrared Spectroscopy: Identification of Unknown Substances

(2) Read each statement carefully and pick the one that is incorrect in its information.

Lecture 15: Introduction to mass spectrometry-i

Role of Quantum Chemistry in Atmospheric Chemical Mechanism Development

pent-2-ene CH 3CH = CHCH 2CH 3 3-methylbut-1-ene (CH 3) 2CHCH = CH 2 2-methylbut-2-ene (CH 3) 2C = CHCH 3 2-methylbut-1-ene H 2C = C(CH 3)CH 2CH 3

FAIMS Technology at a Glance

Organic Compounds - Formation Fate and Impact on Troposphere

Real-time ppb CO 2 Impurity Detection by an Advanced FTIR- UVF System

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

Conversion of CO2. Shigeru FUTAMURA. National Institute of Advanced Industrial Science and Technology AIST Tsukuba West, 16-1 Onogawa, Tsukuba,

Allyl radicals are especially stable due to resonance ( and double bond switch places):

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

Chapter 20. Mass Spectroscopy

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund

ATMOSPHERIC CHEMISTRY OF SELECTED HYDROXYCARBONYLS. Sara M. Aschmann, Janet Arey and Roger Atkinson

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

Organic Chemistry II (CHE ) Examination I February 11, Name (Print legibly): Key. Student ID#:

2B Technologies, Inc. An InDevR Company

Types of Analyzers: Quadrupole: mass filter -part1

Agilent G3212 GC-APCI Source

Proportional Counters

Chemistry 1A, Fall 2003 Midterm 1 Sept 16, 2003 (90 min, closed book)

Modeling of a DBD Reactor for the Treatment of VOC

RS DYNAMICS ECOPROBE 5. Portable IR/PID Gas Analyzer PID. PID and IR Analyzers

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films

Mass Spectrometry: Introduction

Mass Spectrometry. General Principles

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

Development of Technologies for Recovery and Removal of Fluorinated Compounds Causing Global Warming Abstract of the Report

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

Using 11.7eV PID Lamps To Accurately Measure VOCs With Ionization Energy Above 10.6eV

MASS SPECTROMETRY: BASIC EXPERIMENT

Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

Quadrupole Storage Mass Spectrometry

Supporting Information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Chemistry 311: Topic 3 - Mass Spectrometry

Comparison of Townsend dielectric barrier discharge in N2, N2/O2 and N2/N2O: behavior and density of radicals

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Electronic Supplementary Information

EFFECTS OF PROPENE ON THE REMEDIATION OF NOx FROM DIESEL EXHAUSTS*

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 11

Ion-Molecule Reactions in a Nitrogen-Benzene Plasma: Implications for the Destruction of Aromatic Compounds

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

Trends in plasma applications

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

Plasma driven ammonia decomposition on Fe-catalyst: eliminating surface nitrogen poisoning

Chemistry 3720 Old Exams. Practice Exams & Keys

Transcription:

UNIVERSITÀ DEGLI STUDI DI PADVA Department of Chemical Sciences Advanced oxidation of organic pollutants in air non-thermal plasmas Ester Marotta and Cristina Paradisi PlasTEP, Berlin, December 5-6, 212

Air non-thermal plasma and environmental remediation Air non-thermal plasmas are strongly oxidizing environments they are useful means of activation of advanced oxidation processes for air and water remediation N 2, 2 ambient air (humid) HV discharge e high en photons N 2, 2 N 2 * 2 * N 2 + 2 + excitation/ionization/ electron attachment/ dissociation e 2 - N + - ion/molecule and atom/molecule reactions H H H 3 + 3 3 - our goal reactions with organic pollutants to gain better control of process features efficiency selectivity to C 2 no side products how? basic research study of mechanisms C 2

The core process reaction of an organic carbon radical with 2, as in natural mechanisms of tropospheric oxidation of VCs R C. + 2 R C. R C. R=H 2. H + C R = H, alkyl group, Cl, Br,... organic carbon peroxo organic radical radical oxo organic radical R. + C The key organic carbon radical intermediate can be formed from the VC via any of possible initiation steps including reactions with: - radicals and atoms - ions - electrons - molecules in excited states - photons Schiorlin M., Marotta E., Rea M., Paradisi C., Environ. Sci. Technol. 29, 43, 9386

Advanced oxidation of volatile organic compounds (VCs) in air non-thermal plasmas The mechanistic approach study of Efficiency of VC decomposition Products and intermediates of VC decomposition (GC/FID, GC/MS, GC/TCD, LC/MS, FT/IR, IC) Short-lived reactive species, neutral and charged (MS, ES, chemical reactivity probes) under different experimental conditions with regard to Power supply and corona regime VC type (hydrocarbons, halogen-containing VCs, -containing VCs, ) VC concentration level of humidity in the air processing of more VCs together

Corona reactor for Volatile rganic Compounds (VCs) treatment Wire-cylinder geometry (stainless steel, 4 cm i.d. x 6 cm) Power supply +dc ( +25 kv) -dc ( -25 kv) +pulsed (pulsed high voltage power with dc bias, frequency of pulses: -3 Hz) Monitoring of corona (visual observation, V and i measurements) Flow-through mode of operation (15-8 ml/min) n-line and off-line monitoring of reactant and products (FT/IR, GC/MS, GC/FID, GC/TCD, LC/MS, IC) ptical emission spectroscopy

aria aria Ions and of ion chemistry in atmospheric plasma APCI/MS (Atmospheric Pressure Chemical Ionization/MS) R1 Corona discharge (electrons) Ionization 1 s Primary ions (air) 2 +, N 2 +, 2,.. 5 s Reagent ions (water) H 3 + (H 2 ) n N + (H 2 ) n ion/molecule reactions with M 1 % 1 % 1 % 48 55 65 55 48 65 73 69 73 83 93 76 95 95 113 113 113 19 3 43 65 73 89 111 115 111 129 147 164 182 26 28 115 147 131 267 149 184 245 285 Scan AP+ 1.33e4 Scan AP+ 3.14e4 Scan AP+ 631 m/z 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 A. Donò, C. Paradisi, G. Scorrano Rapid Commun. Mass Spectrom. 1997, 11, 1687. E. Marotta and C. Paradisi J. Am. Soc. Mass Spectrom. 29, 2, 697-77 and refs. therein.

Emission Spectroscopy in collaboration Emission with P. Sonato Spectroscopy & B. Zaniol CNR in -atmospheric Padova plasma reactor ptic, F = 5 mm Focus = 3 mm Quartz fibre optic 7 m Entrance Slit 5-1 μm PC CCD camera C-T spectrometer Spectral windows investigated: From 35 nm (H emission) To 78 nm (triplet from I) The region: 33 4 nm for the evaluation of T e, T v, T r from the N 2 and N 2 + molecular emission spectra B. Zaniol, M. Schiorlin, E. Gazza, E. Marotta, X. Ren, M. E. Puiatti, M. Rea, P. Sonato, C. Paradisi, Int. J. Pla. Env. Sci. Tech. 28, 2, 65-71. Marotta E., Schiorlin M., Rea M., Paradisi C., J. Phys. D: Appl. Phys. 21, 12411

Efficiency of non-thermal plasma processing 1. [Toluene]/[Toluene].8.6.4.2. dc.43 L kj -1 In the literature there are different ways to express the process efficiency (k E, b, G, etc.) k E, energy constant, is preferred in mechanistic studies for analogy with chemical kinetics: large k E means high efficiency 1 2 3 4 5 6 7 8 SIE (kj L -1 ) VC VC e ke SIE SIE = Specific Input Energy SIE can be changed by varying the applied voltage while maintaining constant the flow rate or by varying the flow rate while maintaining a constant applied voltage

[Toluene]/[Toluene] I 777nm triplet intensity (a.u.) electron temperature (ev) Process efficiency, k E, depends on power supply 1..8.6.4.2. 3.1 L kj -1 +dc dc +pulsed 1 2 3 4 5 6 7 8 SIE (kj L -1 ).14 L kj -1.43 L kj -1 Better efficiency of pulsed corona is consistent with higher electron temperature and density in plasma as revealed by ES measurements Schiorlin M., Marotta E., Rea M., Paradisi C., Environ. Sci. Technol. 29, 43, 9386 B. Zaniol, M. Schiorlin, E. Gazza, E. Marotta, X. Ren, M. E. Puiatti, M. Rea, P. Sonato, C. Paradisi, Int. J. Pla. Env. Sci. Tech. 28, 2, 65-71. Marotta E., Schiorlin M., Rea M., Paradisi C., J. Phys. D: Appl. Phys. 21, 12411 3,5 3 2,5 2 1,5 1,6 1 6 1,4 1 6 1,2 1 6 1 1 6 8 1 5 6 1 5 +PC DC+ +PC region DC- 1 pulsed dry air humid air,5 DC+ dry air + VC humid air + VC DC- 1 2 3 4 5 6 7 8 Energy density (kj/l) +DC &-DC region 4 1 5 2 1 5 pulsed disch. DC+ disch. DC- disch. 1 2 3 4 5 6 7 8 9 1 11 Energy density (kj/l)

Process efficiency, k E, depends on VC For example, with dc: 1. n-hexane 5 ppm v [VC]/[VC].8.6.4.2 toluene 5 ppm v CH 2 Br 2 5 ppm v CF 2 Br 2 5 ppm v VC k E (LkJ -1 ) +DC DC +Pulsed n-hexane.2.54 2.1 Toluene.14.43 3.1 CH 2 Br 2.64.21.98. 2 4 6 8 1 CF 2 Br 2.41.13.62 SIE (kj L -1 ) Air non-thermal PLASMA has high REACTIVITY but also some SELECTIVITY Marotta E., Schiorlin M., Rea M., Paradisi C., J. Phys. D: Appl. Phys. 21, 12411 Schiorlin M., Marotta E., Dal Molin M., Paradisi C. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

k E (L kj -1 ) Process efficiency, k E, depends on [VC] [CH 2 Br 2 ]/[CH 2 Br 2 ] Decomposition of CH 2 Br 2 in +DC with Dry Air 1..8.6.4.2. CH 2 Br 2 1 ppm v CH 2 Br 2 1 ppm v 2 4 6 8 1 SIE (kj L -1 ),2,175,15,125,1,75,5,25,,,25,5,75,1 1/[CH 2 Br 2 ] Efficiencies are to be compared at equal initial concentrations To interpret the dependence of efficiency on initial concentration it is helpful to use a kinetic model If energy input is constant in time one can shift from efficiency to kinetics SIE kj = P kws L F L SIE VC ke VC e VC e k t

The kinetic model of Slater and Douglas-Hamilton air X + VC I + X X d dt S k S k 1 k 2 d VC dt X (reactive species) I + other products Z + other products X VC k 2 X I k X VC 1 1 ke (L kj -1 ).2.15.1.5...4.8.12 1/[CH 2 Br 2 ] S t k t VC VC VC e VC e VC e k E SIE predicts that k E increases with decreasing [VC] this prediction is generally confirmed by the experiments Slater and Douglas-Hamilton J. Appl. Phys. 1981, 52, 582

C ppm Absorbance Absorbance Abs Abs Product studies - n-line FT-IR analysis C ppm C ppm.4.3 T ue Jul 19 11:56:25 25 (GM T +2:) esano std n-hexane C-H n-hexane stretching.2.1..2.15 T ue Jul 19 16:32:19 25 (GM T +2:) esano -19kV n-hexane -19 kv C 2 3.1.5 -. C 35 3 25 Wavenumbers (cm-1) 2 15 Wavenumbers (cm -1 ) 1 6 5 4 3 C 2 -DC +DC +pulsed 6 5 4 3 C -DC +DC +pulsed 4 3 2 -DC +DC 3 +pulsed 2 1.2.4.6.8 1 1 - [n-hexane]/[n-hexane] 2 1.2.4.6.8 1 1 - [n-hexane]/[n-hexane] 1.2.4.6.8 1 1 - [n-hexane]/[n-hexane] Marotta et al., Environ. Sci. Technol. (27)

area GC C ppm C ppm Sig. 2 in C:\HPCHEM\...\18LUG3.D Product studies - GC analysis with various detectors (MS, FID, TCD) 553 552 551 55 549 548 1 2 3 hexane 4 acetaldehyde lower hydrocarbons propanaldehyde acetone butirraldehyde methanol ethanol 5 6 7 8 3-hexanone 9 2-hexanone 1 547 546 2 4 6 8 Time (min.) 2 15 1 5 Propane and butane DC- DC+ +pulsed.2.4.6.8 1 1 - [n-hexane]/[n-hexane] 12 1 8 6 4 2 Acetone -DC +DC +pulsed.2.4.6.8 1 1 - [n-hexane]/[n-hexane] 8 6 4 2 2-Hexanone -DC +DC +pulsed.2.4.6.8 1 1 - [n-hexane]/[n-hexane] Marotta et al., Environ. Sci. Technol. (27)

Concentration (ppm) % n/n undetected carbon Product studies Carbon balance 1 8 6 4 +DC -DC +pulsed Carbon recovery: + DC > - DC > + pulsed 2..2.4.6.8 1. n-hexane decomposed fraction Data suggest that nonvolatile C- containing products are formed These are in turn oxidized at higher energy input C 2 continues to be released even though all VC has been consumed 12 [C2], dry air 1 [C2], humid air 8 6 4 2,4,6,8 1 1 - [VC]/[VC]

Effect of humidity in the air Humidity is a major component of ambient air Water is a source of H radicals in air plasma H 2 + e - H + H + e - ( 1 D) + H 2 2 H N + 2 + H 2 N 2 H + + H H 2 + + N 2 H 2 + + H 2 H 3 + + H + 2 + H 2 + M + 2 (H 2 ) + M + 2 (H 2 ) + H 2 H 3 + + H + 2

Residual C (ppm) Measurement of relative H concentration via a chemical probe k C + H C 2 + H k(296 K) = 1.661-13 cm 3 molecule -1 s -1 Method used in atmospheric chemistry research (M.J.Campbell et al.(1979)) and in nonthermal plasma research (Mizuno et al. J. Phys. D: Appl. Phys. 22 ) 6 5 4 3 2 1 DC- DC-, RH=4% DC+ DC+, RH=4% pulsed+ 2 4 6 8 1 12 E (kj/l) In humid air more H radicals are produced by -DC than by +DC Marotta et al., Plasma Process. Polymers.(28)C

Residual n-hexane fraction Residual n-hexane fraction Effect of humidity on efficiency of n-hexane (5 ppm in air) removal with -DC and +DC 1.8.6.4.2 -DC dry air -DC humid air 2 4 6 8 1 Energy (kj/l) - DC: efficiency is greater in humid air consistent with known reactivity data k H = 5.2 1-12 cm 3 molecule -1 s -1 k = 9.6 1-14 cm 3 molecule -1 s -1 1.8.6.4 +DC dry air +DC humid air + DC: efficiency is not much affected by humidity.2 5 1 15 2 25 3 Energy (kj/l) Marotta et al., Plasma Process. Polymers.(28)

k E (L/kJ) Similar results are found with other hydrocarbons, and in general with C-H containing VCs 1.2 1..8.6.4 +DC -DC Toluene k H = 5.7 1-12 cm 3 molecole -1 s -1 k = 7.6 1-14 cm 3 molecole -1 s -1 Schiorlin M., Marotta E., Rea M., Paradisi C., Environ. Sci. Technol. 29, 43, 9386.2. 2 4 6 8 R H (%) Humidity induces a decrease in efficiency with +DC but an increase with DC Different mechanisms apply in +DC and DC processing Probing for ionic mechanisms by MS analysis [CH 2 Br 2 ]/[CH 2 Br 2 ] 1..8.6.4.2. +DC, dry air +DC, RH=4% -DC, dry air -DC, RH=4% 1 2 3 4 5 6 7 8 9 1 SIE (kj/l) Marotta E., Schiorlin M., Rea M., Paradisi C., J. Phys. D: Appl. Phys. 21, 12411 Schiorlin M., Marotta E., Dal Molin M., Paradisi C. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

Current ( A) Current - voltage characteristics and ions in air plasma Hydrocarbons with +DC corona 35 3 25 air air + hexane air + octane air 2 15 1 5 air + hexane 1 11 12 13 14 15 16 17 18 Voltage (kv) VC (5 ppm) greatly affects i vs V profile Mass spectrometry provides evidence for VC-derived ions air + octane Marotta et al. Plasma Processes Polym. 28 Marotta et al. J. Am. Soc. Mass Spectrom. 29

Corrente (A) Current - voltage characteristics and ions in air plasma Hydrocarbons with +DC corona 4 35 3 25 2 15 Dry air Benzene 5 ppm Toluene 5 ppm 1 % H 3 + (H 2 ) 2 73 H 3 + (H 2 ) 3 N + (H 2 ) 2 55 48 66 N + (H 2 ) 2 m/z 2 4 6 8 1 12 14 16 18 2 1 5 8 9 1 11 12 13 14 15 16 17 18 Tensione (kv) 1 % T + (T) 184 T + 92 (T+H) + (T+H) + T 55 93 122 T + (N) 185 m/z 2 4 6 8 1 12 14 16 18 2 VC (5 ppm) greatly affects i vs V profile Mass spectrometry provides evidence for VC-derived ions Schiorlin M., Marotta E., Rea M., Paradisi C., Environ. Sci. Technol. 29, 43, 9386

1 1 1 1 1.26e5 Ionization of hydrocarbons in +DC air plasma % (d) 29 55 Hydride abstraction % 39 43 C 4 H + (e) 9 69 72 57 12 113 127 (a) m/z 2 4 6 8 1 12 14 43 % 69 M + + 2 57 72 (b) [M - H] + + H % 2 bck N + (M) 139 (a) + M + 2 [M + 84 (b) ]* + 2 48 114 R + m/z + R' Scan AP+ 43 2 4 6 8 1 12 14 16 18 1 2.95e5 % (b) C 2 H + 3 27 27 41 [M-H] + [M-3H] 41 + C 3 H + 5 43 C 3 H + 7 M 41 + N + 57 71 71 71 [M - H] + + HN R + + neutral products Scan AP+ Scan AP+ Scan AP+ 6.86e4 3.6e4 N + (M) C 4 H + 7 (M) C 3 H + 5 (M) Scan AP+ 3.19e5 (c) 1 % 1 1 bck 66 [M-H] + 83 83 [M-H] + (H 2 ) 3 [M-H] N + (H + (M) C 4 H + 2 ) 7 (M) 139 84 (b) (a) % % bck 48 bck 84 114 66 11 137 m/z 2 4 6 8 1 12 14 16 18 83 1 [M-H] (H 2 ) 3 [M-H] + (H + 2 ) (M) (a) C 139 4 H 7 84 11 137 Scan AP+ Scan 7.e4 AP+ 1.42e4 Scan AP+ 7.e4 C 2 H + 3 (c) M 43 + H 3 + 1 27 41 % 29 55 (d) M + R + 27 1 41 [M - H] + + H 2 + H 2 R + + R'H + H 2 [M - H] + + RH Scan AP+ 1.26e5 (d) Scan AP+ 6.86e4 E. Marotta, C. Paradisi. J. Am. Soc. Mass Spectrom. 29, 2, 697-77.

Current (A) Current - voltage characteristics and ions in air plasma Hydrocarbons with -DC corona 35 3 25 2 15 1 air air + hexane air + octane 1 % 1 air i-octane 2 3 48 2 (H 2 ) 64 5 2 ( 2 ) 3 (H 2 ) 66 68 2 (H 2 ) 2 48 5 64 Scan AP- 1.36e4 Scan AP- 2.16e4 5 1 11 12 13 14 15 16 17 18 Voltage (kv) % 32 66 68 m/z 1 2 3 4 5 6 7 8 9 1 VC (5 ppm) has no effect on i vs V profile Mass spectrometry provides evidence that no VC-derived ions are present in plasma Marotta et al. Plasma Processes Polym. 28

Corrente (A) Current - voltage characteristics and ions in air plasma Hydrocarbons with -DC corona 4 35 3 25 2 15 1 5 Dry air Benzene 5 ppm Toluene 5 ppm 8 9 1 11 12 13 14 15 16 17 18 Tensione (kv) VC (5 ppm) has no effect on i vs V profile Mass spectrometry provides evidence that no VC-derived ions are present in plasma Schiorlin M., Marotta E., Rea M., Paradisi C., Environ. Sci. Technol. 29, 43, 9386 air 1 % 1 % 1 % - 2 (H 2 ) 5-3 (H 2 ) 66 68-3 48-2 (H 2 ) 2-64 2 32-2 ( 2 ) m/z 2 4 6 8 1 12 14 16 18 2 air + toluene 68 5 66-2 (H 2 ) 2-2 (H 2 ) - 3 (H 2 ) 3 - Scan AP- 2.61e3 Scan AP- 3.61e3 48 64-2 ( 2 ) 84 m/z 2 4 6 8 1 12 14 16 18 2 air + benzene - 5 2 (H 2 ) 2 - (H 2 ) 2 Scan AP- 5.91e3 68-66 - 3 (H 2 ) 3 48-64 2 32-2 ( 2 ) m/z 2 4 6 8 1 12 14 16 18 2

Mechanisms of hydrocarbon oxidation in air plasma +DC process is initiated by ion-molecule reactions, such as charge transfer VC + 2 + [VC + ]* R + + R but also hydride abstraction and other ion-molecule reactions -DC process is initiated by radical reactions RH + H RH + H 2 + R H + R both produce carbon centered radicals R which are oxidized according to the sequence R + 2 R R carbonyl derivatives, alcohols C 2 Marotta et al. Plasma Processes Polym. 28

In contrast to hydrocarbons, halogen-containing VCs form negative ions in DC air plasma 1 CH 2 Cl 2 3 (M) Cl (M) 2 (M) 134 132 2 (H 2 )(M) 2 (M) 2 % 119 136 27 116 2 (M) 3 137 222 66 152 286 289 291 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 2 Cl (H 2 )(M) 22 25 APCI-MS Cl (M) 2 3 (M) 2 2 (H 2 )(M) 2 Cl (M) 3 Scan AP- 1.87e3 m/z 1) Ionization by reaction with 2 - MS/MS experiment with triple quadrupole 2 CH 2 Cl-CH 2 Cl + 2 [CH 2 Cl-CH 2 Cl ]* + 2 Cl + C 2 H 2 Cl Cl H H Cl C Cl C H H + 2 _ _ Cl + H H Cl C C Cl 2 Cl 2) Ionization by interaction with electrons CH 2 Cl-CH 2 Cl + e Cl + CH 2 -CH 2 Cl E. Marotta, G. Scorrano, C. Paradisi. Plasma Process. Polym. 25, 3, 29-217.

Negative ions from CF 2 Br 2 in DC air plasma BKN2111 29 (.653) Cm (7:39) 48 5 1 % 64 66 APCI-MS pure air Scan AP- 2.63e4 m/z N2414 1 (.375) 5 Cm (7:24) 1 15 2 25 3 35 4 45 5 55 Scan 6 AP- 289 8.42e3 1 Br CF 2 Br 2 Br (M) Br 258 % 66 293 5 79 81 2 3 (M) APCI-MS CF 2 Br 2 5 ppm 16 21 m/z 5 1 15 2 25 3 35 m/z 4 45 5 55 6 2 + CF 2 Br 2 [CF 2 Br 2 ]* 2 + CF 2 Br 2 2 + CF 2 Br + Br CF 2 Br 2 + 2 Br + CF 2 = + Br * *R. Thomas et al. Int. J. Mass Spectrom. Ion Process. (1996)

Concentration (ppm) A b s o r b a n c e Absorbance CH 2 Br 2 processing with corona in air: products Concentration (ppm).1.9.8 CH 2 Br 2 DC (-21.5 kv) CH 2Br2, DC- 21,5k V, t =1' HN 3 HN 3.7.6.5.4.3.2.1 -. HN 3 N 2 HN 3 C 2 C CH HN 2 Br 2 3 35 3 Wavenumbers (cm-1) 25 2 15 1 Wavenumbers (cm -1 ) C C 2 3 25 2 +DC, [C] DC, [C] +Pulsed, [C] 15 125 1 +DC, [C2] DC, [C2] +Pulsed, [C2] 15 75 1 5 5 25..2.4.6.8 1 - [CH 2 Br 2 ]/[CH 2 Br 2 ]..1.2.3.4.5.6.7 1 - [CH 2 Br 2 ]/[CH 2 Br 2 ] Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

Effect of CH 2 Br 2 on zone concentration 1 +DC 8 6 +DC, DC, +pulsed ppm 3 8 6 4 2 ppm 3 4 2. 2. 4. 6. 8. SIE (kj/l) +DC, Dry Air +DC, CH2Br2 2 2 5ppm. 2. 4. 6. 8. SIE (kj/l) +DC, Dry Air DC, Dry Air +Pulsed, Dry Air +DC, CH2Br2 2 2 5ppm DC, CH2Br2 2 2 5ppm +Pulsed, CH2Br2 2 2 5ppm In the presence of CH 2 Br 2, ozone is completely absent In the case of DC and +pulsed and reduced in the case of +DC Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

A b s o r b a n c e Absorbance CF 2 Br 2 processing with corona in air: products.9.8 CF 2 Br 2 DC (-21.5 kv) CF2Br2, -DC 21.5kV t=1min HN 3 HN 3 CF 2 Br 2 CF 2 Br 2.7.6 CF 2 = HN 3.5.4.3.2 HN 3 HN 3 C 2 N 2 CF 2 =.1 -. Wavenumbers (cm-1) 35 3 25 2 15 1 Wavenumbers (cm -1 ) CF 2 Br 2 decomposition products: The products of the decomposition of CF 2 Br 2 are C 2 and CF 2 = No C formation is detected by FT-IR ther products: 3 is not detected under any corona regime N 2 and HN 3 Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

Formation and fate of CF 2 = Formation via ion/molecule reaction CF 2 Br 2 + 2 Br + CF 2 = + Br via radical reaction CF 2 Br + 2 + M CF 2 Br + M CF 2 Br + N CF 2 Br + N 2 CF 2 Br CF 2 = + Br Reactivity of CF 2 = CF 2 = has a low reactivity toward radical species, while it reacts with water: CF 2 = + H 2 C 2 + 2 HF No C can be formed from CF 2 = Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

Intensity CF2= (a.u.) Processing of CF 2 Br 2 with +DC, DC and +pulsed corona in air Pure air 3 1.6 1.4 1.2 1..8 CF 2 Br 2 5 ppm.6.4.2 +DC DC +Pulsed...1.2.3.4.5.6 1 - [CF 2 Br 2 ]/[CF 2 Br 2 ] 1. zone is not detected under any conditions (+DC, DC, +pulsed) 2. C is not formed under any conditions (+DC, DC, +pulsed) 3. CF 2 = is formed in very similar concentration under +DC, -DC and + pulsed, depending on CF 2 Br 2 conversion 4. Also C 2 is formed in very similar concentration under +DC, -DC and + pulsed, depending on CF 2 Br 2 conversion

Intensity N2 (a.u.) Intensity N2 (a.u.) Processing of CF 2 Br 2 with +DC, DC and +pulsed corona in air.4.6.3.5.4.2.3.1.. 2. 4. 6. 8. SIE (kj/l).2.1. +DC DC +Pulsed..5 1. 1.5 1 - [CF 2 Br 2 ]/[CF 2 Br 2 ] +DC, Dry Air DC, Dry Air +Pulsed, Dry Air +DC, CF2Br2 DC, CF2Br2 +Pulsed, CF2Br2 5. N 2 and HN 3 are formed in very similar concentration under +DC, -DC and + pulsed, depending on CF 2 Br 2 conversion Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

zone formation and destruction in air plasma containing CF 2 Br 2 or CH 2 Br 2 Formation : Destruction: 2 + ( 3 P) 3 Br + 3 Br + 2 Br + Br + 2 3 + 2 2 Cycle I Br + 3 Br + 2 Br + N Br + N 2 3 + N N 2 + 2 Cycle II zone is destroyed by the reaction with or N through cycles catalyzed by Br atoms Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n

N 2 and HN 3 in air plasma containing CF 2 Br 2 or CH 2 Br 2 Formation of N 2 and HN 3 in air plasma: N 2 + N N 2 N 2 + H HN 3 In the presence of CF 2 Br 2 or CH 2 Br 2, N 2 and HN 3 production is not influenced only by Cycle II Br + 3 Br + 2 Br + N Br + N 2 3 + N N 2 + 2 but also by the reaction of N 2 with Br: N 2 + Br BrN 2 BrN 2 + H 2 HBr + HN 3

Mechanisms: comparison of CF 2 Br 2 vs CH 2 Br 2 Absence of H drastically changes the reactivity of CF 2 Br 2 with respect to CH 2 Br 2 +DC, -DC, +pulsed CF 2 Br 2, e, H CH 2 Br 2 -DC, +pulsed +DC e ions C and C 2 CF 2 Br CHBr 2 CH 2 Br CF 2 Br N 2 CF 2 Br N 2 2 CHBr 2 N CHBr 2 N 2 2 CH 2 Br N CH 2 Br N 2 CF 2 = + Br H 2 C 2 + 2 HF CHBr= + Br, H CBr + Br CH 2 = + Br, H CH + Br C + Br C 2 Marotta E., Paradisi C. et al. J. Phys. D: Appl. Phys. 21, 12411 Marotta E., Paradisi C. et al. Environ. Sci. Technol. 212, http://dx.doi.org/1.121/es33561n 2 C and C 2

Conclusions Depending on the VC nature and on the specific corona regime different mechanisms of initiation can prevail in VC advanced oxidation induced by air non-thermal plasma ur results confirm the important role of H radicals in initiating such processes but also provide evidence for alternative mechanisms including ion-molecule reactions The strong oxidizing power of air non-thermal plasma is clearly demonstrated by its capability to decompose also the very persistent pollutant dibromodifluoromethane In the optimization of plasma induced VC advanced oxidation, product selectivity to C 2 is to be pursued alongside with efficiency of VC conversion