Valence quark contributions for the γn P 11 (1440) transition

Similar documents
Covariant quark-diquark model for the N N electromagnetic transitions

A covariant model for the negative parity resonances of the nucleon

L. David Roper

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

Meson-baryon interaction in the meson exchange picture

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Satoshi Nakamura (EBAC, JLab)

Dynamical coupled-channels channels study of meson production reactions from

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Cornelius Bennhold George Washington University

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

γnn Electrocouplings in Dyson-Schwinger Equations

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Photoexcitation of N* Resonances

Jacopo Ferretti Sapienza Università di Roma

Light Baryon Spectroscopy What have we learned about excited baryons?

Unquenching the quark model

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

A Dyson-Schwinger equation study of the baryon-photon interaction.

Faddeev equations: a view of baryon properties

Quarks and the Baryons

Distribution Amplitudes of the Nucleon and its resonances

Richard Williams. Hèlios Sanchis-Alepuz

x(1 x) b 2 dζ 2 m 2 1 x dζ 2 d dζ 2 + V (ζ) ] + k2 + m2 2 1 x k2 + m2 1 dζ 2 + m2 1 x + m2 2 LF Kinetic Energy in momentum space Holographic Variable

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Lecture 9 Valence Quark Model of Hadrons

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Overview of N* Physics

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

Quark-Hadron Duality in DIS Form Factors and. Drell-Yan Antiquark Flavor Asymmetries

Structure of the Roper in Lattice QCD

Dynamical coupled channel calculation of pion and omega meson production

Rôle of the pion electromagnetic form factor in the (1232) γ N timelike transition

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Nucleon Form Factors. Vina Punjabi Norfolk State University JLab Users Group Meeting June 4-6, 2012 Jefferson Lab, Newport News, VA

Coupled channel dynamics in Λ and Σ production

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Pion-Nucleon P 11 Partial Wave

Nucleon Resonance Physics

Recent Results from Jefferson Lab

Hadronic parity-violation in pionless effective field theory

Dynamical understanding of baryon resonances

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Gian Gopal Particle Attributes Quantum Numbers 1

The Λ(1405) is an anti-kaon nucleon molecule. Jonathan Hall, Waseem Kamleh, Derek Leinweber, Ben Menadue, Ben Owen, Tony Thomas, Ross Young

Overview of Light-Hadron Spectroscopy and Exotics

Nucleon structure near the physical pion mass

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

V.I. Mokeev. Nucleon Resonance Structure in Exclusive Electroproduction at High Photon Virtualities, August 13-15, 2012

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

Nucleon Transition Form Factors and New Perspectives

129 Lecture Notes More on Dirac Equation

2007 Section A of examination problems on Nuclei and Particles

arxiv: v1 [hep-ex] 22 Jun 2009

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire

Hadronic light-by-light from Dyson-Schwinger equations

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

Excited Nucleons Spectrum and Structure

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

Covariance, dynamics and symmetries, and hadron form factors

Nucleon Resonance Electro-couplings in Dyson-Schwinger Equations

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Baryon Spectroscopy: what do we learn, what do we need?

Heavy mesons and tetraquarks from lattice QCD

Hadron Phenomenology and QCDs DSEs

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Tetraquarks and Goldstone boson physics

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Charm baryon spectroscopy from heavy quark symmetry

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Results on Charmonium-like States at BaBar

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Baryon Electroproduction

Quark Model of Hadrons

Spin Densities and Chiral Odd Generalized Parton Distributions

Hadron Spectroscopy at COMPASS

The N-tο- (1232) transition from Lattice QCD :

N N Transitions from Holographic QCD

Space-Time Symmetries

Properties of the proton and neutron in the quark model

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Discovery of charged bottomonium-like Z b states at Belle

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Wave functions and compositeness for hadron resonances from the scattering amplitude

Nucleon structure from lattice QCD

arxiv: v1 [hep-ex] 31 Dec 2014

Symposium in honor of Keh-Fei Liu on the occasion of his 60th Birthday

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Report on NSTAR 2005 Workshop

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

TMDs in covariant approach

Transcription:

Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon June 1, 21 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 1 / 22

1 Motivation 2 Covariant spectator quark model Quark current Baryon wave functions Electromagnetic transition current 3 Results: γn P 11 (144) transition form factors Form factors physical point Form factors lattice γn Roper form factors Meson cloud γn Roper Helicity amplitudes 4 Conclusions Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 2 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Theory- Quark model: angular momentum (1/2) parity (+) first radial excitation of the nucleon large mass (bare mass) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Theory- Quark model: angular momentum (1/2) parity (+) first radial excitation of the nucleon large mass (bare mass) Experimentally- large width ( 3 MeV) Decay: πn, ππn molecular like state (ππn = π, σn...) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Theory- Quark model: angular momentum (1/2) parity (+) first radial excitation of the nucleon large mass (bare mass) Experimentally- large width ( 3 MeV) Decay: πn, ππn molecular like state (ππn = π, σn...) Goal: study of the valence quark content in the Roper system (Valence quarks dominates at large Q 2 ) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Theory- Quark model: angular momentum (1/2) parity (+) first radial excitation of the nucleon large mass (bare mass) Experimentally- large width ( 3 MeV) Decay: πn, ππn molecular like state (ππn = π, σn...) Goal: study of the valence quark content in the Roper system (Valence quarks dominates at large Q 2 ) Framework: covariant quark model (Spectator c ) -Franz Gross Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Motivation and goals Understand of the electromagnetic structure of the resonance P 11 (144) Roper N Interpret the available information from γn N transition Why? Mysterious resonance Theory- Quark model: angular momentum (1/2) parity (+) first radial excitation of the nucleon large mass (bare mass) Experimentally- large width ( 3 MeV) Decay: πn, ππn molecular like state (ππn = π, σn...) Goal: study of the valence quark content in the Roper system (Valence quarks dominates at large Q 2 ) Framework: covariant quark model (Spectator c ) -Franz Gross compare with CLAS data & MAID analysis estimate meson cloud contribution Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 3 / 22

Spectator quark model quark current Constituent quarks (quark form factors) [ j µ 1 I = 6 f 1+ + 1 ] ) 2 f 1 τ 3 (γ µ qqµ q 2 + [ 1 6 f 2+ + 1 ] iσ µν 2 f q ν 2 τ 3 2M N Quarks with anomalous magnetic moments κ u, κ d quark-antiquark gluon dressing Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 4 / 22

Spectator quark model quark current Constituent quarks (quark form factors) [ j µ 1 I = 6 f 1+ + 1 ] ) 2 f 1 τ 3 (γ µ qqµ q 2 + [ 1 6 f 2+ + 1 ] iσ µν 2 f q ν 2 τ 3 2M N Quarks with anomalous magnetic moments κ u, κ d Vector meson dominance parameterization: quark-antiquark gluon dressing m 2 v M 2 h Q2 f 1± = λ q + (1 λ q ) m 2 v + Q 2 + c ± (Mh 2 + Q2 ) 2 { m 2 v f 2± = κ ± d ± m 2 v + Q 2 + (1 d M 2 } h ±) Mh 2 + Q2 2 poles: m v = m ρ and M h = 2M N ; κ ± nucleon mag. mom. 5 parameters to be determined: λ q, mixture coefficients c ± and d ± with d + = d [4 parameters] Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 4 / 22

Results: Nucleon form factors (I) G Mp /G D /µ p 1.2 1.8.6 G Mn /G D /µ n 1.2 1.8.6.4 5 1 15 2 25 3 35.4 1 1.12.1 G Ep /G Mp /µ p.5 G En.8.6.4.2 -.5 2 4 6 8 1.5 1 1.5 2 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 5 / 22

Results: Nucleon form factors (II) F Gross, GR and MT Peña, PRC 77, 1522 (28) model II G Ep /G Mp /µ p 1.5 G En.12.1.8.6.4.2 -.5 2 4 6 8 1.5 1 1.5 2 Quark current fixed [4 parameters] No pion cloud (explicit)... but VMD Adjust 2 parameters in the nucleon wave function Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 6 / 22

Spectator quark model Wave functions Wave functions: B = quark diquark p 1 Ψ B = (flavor) (spin) (orbital) (radial) ε P Nucleon wave function: [PRC 77,1522 (28)] Simplest structure S-state in quark-diquark Ψ N (P, k) = 1 [ Φ I Φ S + Φ 1 IΦ 1 S] ψn (P, k) 2 k Ψ P Roper wave function: Ψ R (P, k) = 1 2 [ Φ I Φ S + Φ 1 IΦ 1 S] ψr (P, k) ψ R first radial excitation of ψ N Φ,1 I isospin; Φ,1 S spin combination of quark states written in terms of baryon properties Covariant Ψ B : ( P M N )Ψ N =, ( P M R )Ψ R = Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 7 / 22

Spectator quark model Nucleon and Roper wf Scalar wave functions deppendent of P (baryon) and k (diquark) χ B = (M B m D ) 2 (P k) 2 M B m D, M B = baryon mass; m D = diquark mass Momentum range parameters β 1 (long) and β 2 (short) 1 ψ N (P, k) = N m D (β 1 + χ N )(β 2 + χ N ) β 3 χ R 1 ψ R (P, k) = N R (β 1 + χ R ) m D (β 1 + χ R )(β 2 + χ R ) Harmonic oscilator potential- 1st order in χ R Nucleon orthogonal to Roper: ψ R (P +, k)ψ N (P, k) fix β = 3 k Q [no parameters] 2 = Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 8 / 22

Spectator quark model Electromagnetic transition current Quark current j µ I Baryon wave function Ψ B J µ Spectator formalism: relativistic inpulse approximation J µ = 3 Ψ f (P +, k)j µ I Ψ i(p, k) λ k P + Franz Gross: PR186, 1448 (1969); F Gross er al PRC 45, 294 (1992) N Ψ f k Ψ i diquark on-shell P N J µ = ū R (P + ) ) } {(γ µ qqµ q 2 F1 (Q 2 ) + iσµν q ν M R + M F 2 (Q 2 ) u(p ) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 9 / 22

γn Roper form factors [PRD 81, 742 (21)] F1 (Q 2 ) = 3 2 j 1I + 1 3(M R + M) 2 Q 2 2 (M R + M) 2 + Q 2 j 3I M R + M Q 2 M (M R + M) 2 + Q 2j 4I, F2 (Q 2 ) = 3 M R + M 4 M j 2I (M R + M) 2 (M R + M) 2 + Q 2j 3I + M R + M 2M (M R + M) 2 3Q 2 (M R + M) 2 + Q 2 j 4I, Isospin coefficients GR, MTP, and FG, PRC 77, 1522 (28) j 1 = 1 6 f 1+ + 1 2 f 1 τ 3, j 3 = 1 6 f 1+ 1 6 f 1 τ 3 j 2 = 1 6 f 2+ + 1 2 f 2 τ 3, j 4 = 1 6 f 2+ 1 6 f 2 τ 3 Overlap integral: I(Q 2 ) = k ψ R (P +, k)ψ N (P, k), Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 1 / 22

γn Roper form factors- results.2.15 CLAS data.2 F 1.1 F 2 -.2 CLAS data.5 -.4 1 2 3 4 5 -.6 1 2 3 4 5 CLAS data - Aznauryan et al PRC 8, 5523 (29) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 11 / 22

γn Roper form factors- results.2.15 CLAS data.2 F 1.1 F 2 -.2 CLAS data.5 -.4 1 2 3 4 5 -.6 1 2 3 4 5 CLAS data - Aznauryan et al PRC 8, 5523 (29) Discrepance for Q 2 < 1.5 GeV 2 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 11 / 22

γn Roper form factors- results.2.15 CLAS data.2 F 1.1 F 2 -.2 CLAS data.5 -.4 1 2 3 4 5 -.6 1 2 3 4 5 CLAS data - Aznauryan et al PRC 8, 5523 (29) Discrepance for Q 2 < 1.5 GeV 2 Good description for Q 2 > 1.5 GeV 2 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 11 / 22

γn Roper form factors- results.2.15 CLAS data.2 F 1.1 F 2 -.2 CLAS data.5 -.4 1 2 3 4 5 -.6 1 2 3 4 5 CLAS data - Aznauryan et al PRC 8, 5523 (29) Discrepance for Q 2 < 1.5 GeV 2 Good description for Q 2 > 1.5 GeV 2 M R = 144 MeV, Effect of the Roper mass? Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 11 / 22

γn Roper form factors- bare mass Model with meson cloud dressing (EBAC) Suzuki et al; PRL 14, 4232 (21) Bare mass: M R 175 MeV πn,ππ N π ηn -1 A(1357,-76) ρn Im (E) (MeV) -2 B(1364,-15) C(182,-248) -3 σn 14 16 18 Re (E) (MeV) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 12 / 22

γn Roper form factors- bare mass.2.15 CLAS data Spectator (M=1.75 GeV).2 CLAS data Spectator (M=1.75 GeV) F 1.1.5 F 2.1 1 2 3 4 5 1 2 3 4 5 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 13 / 22

Form factors in lattice, [HW Lin et al PRD, 11458 (28)].4.3.4.3 Lattice Spectator (lattice regime) F 1.2 Lattice Spectator (lattice regime) F 2.2.1.1 1 2 3 4 5 1 2 3 4 5 Extension for lattice Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 14 / 22

Form factors in lattice, [HW Lin et al PRD, 11458 (28)].4.3.4.3 Lattice Spectator (lattice regime) F 1.2 Lattice Spectator (lattice regime) F 2.2.1.1 1 2 3 4 5 1 2 3 4 5 Extension for lattice Description of lattice data (Q 2 < 1 GeV 2 ) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 14 / 22

Form factors in lattice, [HW Lin et al PRD, 11458 (28)].4.3.4.3 Lattice Spectator (lattice regime) F 1.2 Lattice Spectator (lattice regime) F 2.2.1.1 1 2 3 4 5 1 2 3 4 5 Extension for lattice Description of lattice data (Q 2 < 1 GeV 2 ) Good description of physical high Q 2 data Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 14 / 22

Form factors in lattice, [HW Lin et al PRD, 11458 (28)].4.3.4.3 Lattice Spectator (lattice regime) F 1.2 Lattice Spectator (lattice regime) F 2.2.1.1 1 2 3 4 5 1 2 3 4 5 Extension for lattice Description of lattice data (Q 2 < 1 GeV 2 ) Good description of physical high Q 2 data valence quark contributions under control Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 14 / 22

Form factors in lattice, [HW Lin et al PRD, 11458 (28)].4.3.4.3 Lattice Spectator (lattice regime) F 1.2 Lattice Spectator (lattice regime) F 2.2.1.1 1 2 3 4 5 1 2 3 4 5 Extension for lattice Description of lattice data (Q 2 < 1 GeV 2 ) Good description of physical high Q 2 data valence quark contributions under control estimate meson cloud at low Q 2 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 14 / 22

γn Roper form factors- results MAID.2.15 CLAS data MAID.2 F 1.1.5 F 2 -.2 -.4 CLAS data MAID 1 2 3 4 5 -.6 1 2 3 4 5 Spectator QM: valence contributions F val i Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 15 / 22

γn Roper form factors- results MAID.2.15 CLAS data MAID.2 F 1.1.5 F 2 -.2 -.4 CLAS data MAID 1 2 3 4 5 -.6 1 2 3 4 5 Spectator QM: valence contributions F val i Compare with MAID fit F i - Tiator et al PLB 672, 344 (29) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 15 / 22

γn Roper form factors- results MAID.2.15 CLAS data MAID.2 F 1.1.5 F 2 -.2 -.4 CLAS data MAID 1 2 3 4 5 -.6 1 2 3 4 5 Spectator QM: valence contributions Fi val Compare with MAID fit Fi - Tiator et al PLB 672, 344 (29) Meson cloud: F mc i = Fi Fi val Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 15 / 22

γn Roper Meson cloud contributions- MAID fit F 1.2.15.1.5 -.5 Spectator QM (valence) MAID Meson cloud (MAID) -.1 1 2 3 4 5 F 2.2 -.2 -.4 -.6 Spectator QM (valence) MAID Meson cloud (MAID) 1 2 3 4 5 Fi mc (Q 2 ) = Fi (Q 2 ) Fi val (Q 2 ) F1 F1 MAID Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 16 / 22

γn Roper Meson cloud contributions- CLAS F 1.2.15.1.5 -.5 Spectator QM (valence) MAID Meson cloud (MAID) Meson cloud (CLAS data) -.1 1 2 3 4 5 F 2.2 -.2 -.4 -.6 Spectator QM (valence) MAID Meson cloud (MAID) Meson cloud (CLAS data) 1 2 3 4 5 Fi mc (Q 2 ) = Fi (Q 2 ) Fi val (Q 2 ) F1 F1 CLAS Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 17 / 22

γn Roper Helicity amplitudes A 1/2 (Q 2 ) 8 6 4 2-2 -4-6 CLAS data MAID -8 1 2 3 4 5 S 1/2 (Q 2 ) 6 5 4 3 2 1 CLAS data MAID 1 2 3 4 5 Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 18 / 22

γn Roper Helicity amplitudes -meson cloud 6 A 1/2 (Q 2 ) 5 S 1/2 (Q 2 ) 4 2 MAID CLAS meson cloud -5 MAID CLAS meson cloud -2-1 1 2 3 4 5-4 1 2 3 4 5 A mc i (Q 2 ) = A i (Q 2 ) A val i (Q 2 ) Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 19 / 22

γn Roper: Conclusions γn Roper Good description of high Q 2 data and lattice data [ parameters] Valence quark degrees of freedom under control estimate meson cloud contributions Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 2 / 22

γn Roper: Conclusions γn Roper Good description of high Q 2 data and lattice data [ parameters] Valence quark degrees of freedom under control estimate meson cloud contributions Method can be applied to higher resonances Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 2 / 22

γn Roper: Conclusions γn Roper Good description of high Q 2 data and lattice data [ parameters] Valence quark degrees of freedom under control estimate meson cloud contributions Method can be applied to higher resonances Other applications: Nucleon form factors PRC 77, 1522 (28) γn transition: PRD 78, 11417 (28); PRD 8, 138 (29) Ω form factors PRD8, 334 (29) form factors arxiv:12.417 [hep-ph], PLB 678, 355 (29) Octet magnetic moments (w/ pion cloud) arxiv:91.2171 [hep-ph] Form factors in lattice JPG36, 11511 (29) Thank you Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 2 / 22

Bibliography (part 1) A pure S-wave covariant model for the nucleon, F. Gross, G. Ramalho and M. T. Peña, Phys. Rev. C 77, 1522 (28). Fixed-axis polarization states: covariance and comparisons, F. Gross, G. Ramalho and M. T. Peña, Phys. Rev. C 77, 3523 (28). A Covariant model for the nucleon and the, G. Ramalho, M. T. Peña and F. Gross, Eur. Phys. J. A 36, 329 (28). D-state effects in the electromagnetic N transition, G. Ramalho, M. T. Peña and F. Gross, Phys. Rev. D 78, 11417 (28). Nucleon and γn lattice form factors in a constituent quark model, G. Ramalho and M. T. Peña, J. Phys. G 36, 11511 (29). Valence quark contribution for the γn quadrupole transition extracted from lattice QCD, G. Ramalho and M. T. Peña, Phys. Rev. D 8, 138 (29). Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 21 / 22

Bibliography (part 2) Electromagnetic form factors of the Delta in a S-wave approach, G. Ramalho and M. T. Peña, J. Phys. G 36, 854 (29). A relativistic quark model for the Ω electromagnetic form factors, G. Ramalho, K. Tsushima and F. Gross, Phys. Rev. D 8, 334 (29). Using baryon octet magnetic moments and masses to fix the pion cloud contribution, to appear in PLB, F. Gross, G. Ramalho and K. Tsushima, arxiv:91.2171 [hep-ph]. Electric quadrupole and magnetic octupole moments of the, G. Ramalho, M. T. Peña and F. Gross, Phys. Lett. B 678, 355 (29). Electromagnetic form factors of the in a D-wave approach, G. Ramalho, M. T. Peña and Franz Gross, arxiv:12.417 [hep-ph] Valence quark contributions for the γn P 11 (144) form factors, G. Ramalho and K. Tsushima, Phys. Rev. D 81, 742 (21). Gilberto Ramalho (IST, Lisbon) Val. Q contributions for γn Roper MENU 21; June 4, 21 22 / 22