Sitronix ST7586S INTRODUCTION FEATURES. 4-Level Gray Scale Dot Matrix LCD Controller/Driver. 6800, 8080, 4-Line & 3-Line Interface

Similar documents
TR7707. TR7707 Document No.:TR7707 Version: x240 dot Graphics Mono up to16 grayscale STN-LCD Driver/Controller INTRODUCTION FEATURES

S6B33B3A Preliminary

AZ DISPLAYS, INC. COMPLETE LCD SOLUTIONS SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

AZ DISPLAYS, INC. COMPLETE LCD SOLUTIONS SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

SPECIFICATION FOR LCD MODULE MODULE NO: AMC2004A-SPI REVISION NO: 00. Customer s Approval:

XIAMEN OCULAR LCD DEVIDES CO.,LTD.

CRYSTAL CLEAR TECHNOLOGY SDN. BHD. Spec. No: CMC216-01

Display Elektronik GmbH LCD MODULE DEM SGH. Product specification Version: 0

SSD1289. Advance Information. 240 RGB x 320 TFT LCD Controller Driver integrated Power Circuit, Gate and Source Driver with built-in RAM

EMERGING DISPLAY CUSTOMER ACCEPTANCE SPECIFICATIONS 162A0(LED TYPES) EXAMINED BY : FILE NO. CAS ISSUE :NOV.18,1999 TOTAL PAGE : 8 APPROVED BY:

( DOC No. HX8363-A-DS ) HX8363-A

SUNLIKE DISPLAY GENERAL SPECIFICATION

Thiscontrolerdatasheetwasdownloadedfrom htp:/ a-si TFT LCD Single Chip Driver 240RGBx320 Resolution and 262K Color

SPECIFICATION FOR LCD MODULE MODULE NO: AMC0802B-I2C REVISION NO: 00

SUNLIKE DISPLAY. Model No: SC2004C GENERAL SPECIFICATION

KTBCD430-D1. Product. Bi-stable Cholesteric Display Module 128 x 64 Dots Matrix Build In Voltage Booster

SPECIFICATION FOR LCD MODULE

VFD- RoHS Compliant M0116MY-161LSBR2-1. User s Guide. (Vacuum Fluorescent Display Module) For product support, contact

SSD2119. Advance Information. 320 RGB x 240 TFT LCD Driver Integrated Power Circuit, Source and Gate Driver and RAM

Specifications for Approval

SPECIFICATIONS LIQUID CRYSTAL DISPLAY MODULE MODEL NO : SD1602VBWB-XA-G-R

MM74C912 6-Digit BCD Display Controller/Driver

SPECIFICATION FOR LCD MODULE

ICS reserves the right to make changes in the device data identified in

NJU BIT PARALLEL TO SERIAL CONVERTER PRELIMINARY PACKAGE OUTLINE GENERAL DESCRIPTION PIN CONFIGURATION FEATURES BLOCK DIAGRAM

RT9403. I 2 C Programmable High Precision Reference Voltage Generator. Features. General Description. Ordering Information.

PART TEMP RANGE PIN-PACKAGE

MYTECH CORPORATION. 180 Old Tappan Rd., Bldg. 6, Old Tappan, NJ Tel: (201) Fax: (201)

* Note: If Vee varies from recommended value, you cannot get proper contrast or viewing angle.

AZ DISPLAYS,INC. COMPLETE LCD SOLUTIONS SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY

TECHNICAL SPECIFICATION MODEL: ET013TT1. Version: 1.0 ET013TT1. Customer. Date

MS BA01. PHT Combination Sensor SPECIFICATIONS

MS BA Altimeter and diving pressure sensor

3.3 V 256 K 16 CMOS SRAM

DEM C TTH-PW-N

HN58C256 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

MM74C922 MM74C Key Encoder 20-Key Encoder

Graphic 128*64 LCD Display Specification

LH5P832. CMOS 256K (32K 8) Pseudo-Static RAM

HN58C65 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

2x16 COG Alphanumeric Modules

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description.

CHARACTER TYPE LCD MODULE PVC160101PTN03 PRODUCT SPECIFICATIONS

5.0 V 256 K 16 CMOS SRAM

SA Technical Datasheet v2.1.doc

LH5P8128. CMOS 1M (128K 8) Pseudo-Static RAM PIN CONNECTIONS

MS BA01 PTH Fusion Sensor

Chapter 7. Sequential Circuits Registers, Counters, RAM

S-1000 Series ULTRA-SMALL PACKAGE HIGH-PRECISION VOLTAGE DETECTOR. Features. Applications. Packages. Seiko Instruments Inc. 1.

AMC2404AR-B-B6WTDW-SP

DATASHEET CA3162. Features. Description. Ordering Information. Pinout. Functional Block Diagram. A/D Converters for 3-Digit Display

MS BA01 Variometer Module, with LCP cap


MM74C912 6-Digit BCD Display Controller Driver MM74C917 6-Digit Hex Display Controller Driver

SPECIFICATION. Messrs. DATE 20 June, 2013 No. V AP4, AG4 Pressure Sensor

MS BA Micro Altimeter Module

89BSD CALCULATION METHOD APPLICATION NOTE

MS4525HRD (High Resolution Digital) Integrated Digital Pressure Sensor (24-bit Σ ADC) Fast Conversion Down to 1 ms Low Power, 1 µa (standby < 0.15 µa)

ISSP User Guide CY3207ISSP. Revision C

Differential Pressure Sensor

MS BA01 Miniature Altimeter Module

LCD MODULE DEM SYH-PY

OPERATING MANUAL. EIB-Kombisensor AS 315 N

5 V 64K X 16 CMOS SRAM

SSD1289. Product Preview. 240 RGB x 320 TFT Driver Integrated Power, Gate and Source Driver With RAM

LV5217GP. Specifications. Bi-CMOS IC 3ch LED Driver. Absolute Maximum Ratings at Ta = 25 C. Ordering number : ENA0833A.

LC75829PE, LC75829PW 1/4, 1/3-Duty General-Purpose LCD Driver

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

LABORATORY MANUAL MICROPROCESSOR AND MICROCONTROLLER

EMERGING DISPLAY CUSTOMER ACCEPTANCE SPECIFICATIONS EG64E00BCWU MODEL NO. : FOR MESSRS : EXAMINED BY : FILE NO. CAS ISSUE : OCT.

Acceleration/Velocity/Displacement VIBRATION METER

9-Channel 64steps Constant-Current LED Driver with SPI Control. Features

MS4525HRD (High Resolution Digital)

( DOC No. HX8257-A-DS )

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

AMP DISPLAY INC. SPECIFICATIONS AMP DISPLAY INC 9856 SIXTH STREET RANCHO CUCAMONGA CA TEL: FAX:


E2T0 DVP

DEM B TMH-PW-N

The Real-Time Clocks of the 71M65XX Metering ICs

SSD2123. Product Preview. 480 x 272 RGB TFT LCD Driver Integrated Power Circuit, Gate and Source Driver

32K x 8 EEPROM - 5 Volt, Byte Alterable

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code:

Design Specification. OLED Display Controller And Driver IC LD7134

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1

DATA SHEET. Thermocouple module with digital I²C-Interface - THMOD-I²C. Characteristic features. Areas of application. Features.

DESCRIPTION FEATURES APPLICATIONS. Audio Processor IC

PART kHz CRYSTAL ALARM FUNCTION

S6B CH SEGMENT / COMMON DRIVER FOR DOT MATRIX LCD

SRM2264L10/12 CMOS 64K-BIT STATIC RAM. Low Supply Current Access Time 100ns/120ns 8,192 Words 8 Bits, Asynchronous DESCRIPTION

5 8 LED MAX6950/MAX6951 MAX6950/MAX6951 SPI TM QSPI TM MICROWIRE TM 7 LED LED 2.7V MAX LED MAX LED 16 (0-9 A-F) RAM 16 7 LED LED

MECHANICAL SPECIFICATIONS Specifications Dimensional Outline (typ.) 136.8(W) x 85.9 (H) x 2.95/4.6 (D) mm *)

SILICONTEK CO., LTD.

EM48AM3284LBB. Revision History. Revision 0.1 (May. 2010) - First release.

SSD1283A. Product Preview. 132 RGB x 132 TFT Driver Integrated Power, Gate, Source Driver with built-in RAM

THIS SPECIFICATION IS APPLIED FOR LCD MODULE DELIVERED COMPANY BY ORION DISPLAY TECHNOLOGY CO., LTD CHECKED CHECKED APPROVAL

NV Electronically Programmable Capacitor

64K x 18 Synchronous Burst RAM Pipelined Output

Neotec Semiconductor Ltd. 新德科技股份有限公司

Transcription:

Sitronix INTRODUCTION ST ST7586S 4-Level Gray Scale Dot Matrix LCD Controller/Driver ST7586S is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. It contains 384-segment and 160-common driver circuits. This chip can be connected directly to a microprocessor which accepts 8-bit parallel interface (8080-series or 6800-series type), 4-Line serial interface or 3-Line serial interface. Display data is stored into an on-chip Display Data RAM (DDRAM). It performs the Display Data RAM read/write operation without external operating clock, and the power consumption can be minimized. In addition, since all necessary power supply circuits for LCD system are built-in, ST7586S constructs a LCD display system with the fewest components. FEATURES Single-chip LCD controller/driver Driver Output Circuits 384 segment outputs / 160 common outputs On-chip Display Data RAM Capacity: 384 x 160 x 2 = 122,880 bits Various Partial Display Features Applicable partial duty Partial window moving & data scrolling Microprocessor Interface 8-bit parallel bi-directional interface supports 6800-series or 8080-series MPU 4-Line serial interface 3-Line (9-bit) serial interface On-chip Low Power Analog Circuit On-chip oscillator circuit Voltage booster with built-in boost-capacitors Extremely few external components: 4 capacitors Built-in voltage regulator with programmable contrast Built-in voltage follower supports LCD bias voltage Available bias: 1/9 ~ 1/14 Operating Voltage Range Digital Power (VDD1): 1.8V ~ 3.3V (TYP.) Analog Power (VDD2~VDD5, VDDX): 2.8V ~ 3.3V (TYP.) LCD operation voltage (Vop = V0-XV0) : 18V Built-in OTP ROM for LCD Vop Optimization Package Type: COG ST7586S 6800, 8080, 4-Line & 3-Line Interface Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. Ver-1.1a 1/63 2009/11/30

PAD ARRANGEMENT 154 Unit : um (5443.11, -297.5) Unit: um Part Number ST7586S-G Chip Size 11434 x 701 134 35 Chip Thickness 300 Bump Height 12 15 Bump Bump Size 10, 11, 31, 39 105 x 63 214 215 20 8, 29, 30, 37, 38 25 x 63 1~7, 9, 12~28, 32~36, 40~134 65 x 63 135~153, 660~678 149.4 x 10.5 154~659 10.5 x 149.4 * Refer to PAD CENTER COORDINATES for ITO layout 20 598 599 15 1 35 659 Unit : um (-5443.11, -297.5) Ver-1.1a 2/63 2009/11/30

PAD CENTER COORDINATES PAD NAME X Y 1 VSS1-5300 -283 2 VPP -5220-283 3 VPP -5140-283 4 VPP -5060-283 5 VPP -4980-283 6 CL -4900-283 7 CLS -4820-283 8 VDD1-4760 -283 9 VD1S -4700-283 10 A0-4600 -283 11 RWR -4480-283 12 D0-4380 -283 13 DUMMY -4300-283 14 D1-4220 -283 15 D2-4140 -283 16 D3-4060 -283 17 D4-3980 -283 18 D5-3900 -283 19 D6-3820 -283 20 D7-3740 -283 21 Reserved -3660-283 22 Reserved -3580-283 23 Reserved -3500-283 24 Reserved -3420-283 25 Reserved -3340-283 26 Reserved -3260-283 27 Reserved -3180-283 28 Reserved -3100-283 29 VSS1-3040 -283 30 VDD1-3000 -283 31 ERD -2920-283 32 RSTB -2820-283 33 DUMMY -2740-283 34 IF1-2660 -283 35 IF2-2580 -283 36 IF3-2500 -283 37 VSS1-2440 -283 38 VDD1-2400 -283 39 CSB -2320-283 40 EXTB -2220-283 41 TE -2140-283 42 TCAP -2060-283 43 VDD1-1980 -283 44 VDD1-1900 -283 45 VDD1-1820 -283 46 VDD1-1740 -283 PAD NAME X Y 47 VDD1-1660 -283 48 VDD1-1580 -283 49 VD1I -1500-283 50 VD1I -1420-283 51 VD1I -1340-283 52 VD1I -1260-283 53 VD1O -1180-283 54 VD1O -1100-283 55 VSS1-1020 -283 56 VSS1-940 -283 57 VSS1-860 -283 58 VSS1-780 -283 59 VSS1-700 -283 60 VSS1-620 -283 61 VSSX -540-283 62 VSSX -460-283 63 VSS2-380 -283 64 VSS2-300 -283 65 VSS2-220 -283 66 VSS2-140 -283 67 VSS2-60 -283 68 VSS2 20-283 69 VSS2 100-283 70 VSS2 180-283 71 VSS2 260-283 72 VSS2 340-283 73 VSS2 420-283 74 VSS2 500-283 75 VSS4 580-283 76 VSS4 660-283 77 VSS4 740-283 78 VDDX 820-283 79 VDDX 900-283 80 VDD3 980-283 81 VDD3 1060-283 82 VDD4 1140-283 83 VDD4 1220-283 84 VDD4 1300-283 85 VDD5 1380-283 86 VDD5 1460-283 87 VDD5 1540-283 88 VDD5 1620-283 89 VDD5 1700-283 90 VDD5 1780-283 91 VDD5 1860-283 92 VDD5 1940-283 Ver-1.1a 3/63 2009/11/30

PAD NAME X Y 93 VDD2 2020-283 94 VDD2 2100-283 95 VDD2 2180-283 96 VDD2 2260-283 97 VDD2 2340-283 98 VDD2 2420-283 99 VDD2 2500-283 100 VDD2 2580-283 101 VDD2 2660-283 102 VDD2 2740-283 103 VM 2820-283 104 VM 2900-283 105 VM 2980-283 106 VM 3060-283 107 VM 3140-283 108 VM 3220-283 109 VM 3300-283 110 VREF 3380-283 111 V0I 3460-283 112 V0I 3540-283 113 V0I 3620-283 114 V0I 3700-283 115 V0S 3780-283 116 V0O 3860-283 117 V0O 3940-283 118 XV0O 4020-283 119 XV0O 4100-283 120 XV0S 4180-283 121 XV0I 4260-283 122 XV0I 4340-283 123 XV0I 4420-283 124 XV0I 4500-283 125 VGO 4580-283 126 VGO 4660-283 127 VGS 4740-283 128 VGI 4820-283 129 VGI 4900-283 130 VGI 4980-283 131 VGI 5060-283 132 VGI 5140-283 133 VGI 5220-283 134 VSS1 5300-283 135 COM1 5606.5-284.5 136 COM3 5606.5-262.5 137 COM5 5606.5-240.5 138 COM7 5606.5-218.5 139 COM9 5606.5-196.5 140 COM11 5606.5-174.5 PAD NAME X Y 141 COM13 5606.5-152.5 142 COM15 5606.5-130.5 143 COM17 5606.5-108.5 144 COM19 5606.5-86.5 145 COM21 5606.5-64.5 146 COM23 5606.5-42.5 147 COM25 5606.5-20.5 148 COM27 5606.5 1.5 149 COM29 5606.5 23.5 150 COM31 5606.5 45.5 151 COM33 5606.5 67.5 152 COM35 5606.5 89.5 153 COM37 5606.5 111.5 154 COM39 5649.33 240 155 COM41 5627.33 240 156 COM43 5605.33 240 157 COM45 5583.33 240 158 COM47 5561.33 240 159 COM49 5539.33 240 160 COM51 5517.33 240 161 COM53 5495.33 240 162 COM55 5473.33 240 163 COM57 5451.33 240 164 COM59 5429.33 240 165 COM61 5407.33 240 166 COM63 5385.33 240 167 COM65 5363.33 240 168 COM67 5341.33 240 169 COM69 5319.33 240 170 COM71 5297.33 240 171 COM73 5275.33 240 172 COM75 5253.33 240 173 COM77 5231.33 240 174 COM79 5209.33 240 175 COM81 5187.33 240 176 COM83 5165.33 240 177 COM85 5143.33 240 178 COM87 5121.33 240 179 COM89 5099.33 240 180 COM91 5077.33 240 181 COM93 5055.33 240 182 COM95 5033.33 240 183 COM97 5011.33 240 184 COM99 4989.33 240 185 COM101 4967.33 240 186 COM103 4945.33 240 187 COM105 4923.33 240 188 COM107 4901.33 240 Ver-1.1a 4/63 2009/11/30

PAD NAME X Y 189 COM109 4879.33 240 190 COM111 4857.33 240 191 COM113 4835.33 240 192 COM115 4813.33 240 193 COM117 4791.33 240 194 COM119 4769.33 240 195 COM121 4747.33 240 196 COM123 4725.33 240 197 COM125 4703.33 240 198 COM127 4681.33 240 199 COM129 4659.33 240 200 COM131 4637.33 240 201 COM133 4615.33 240 202 COM135 4593.33 240 203 COM137 4571.33 240 204 COM139 4549.33 240 205 COM141 4527.33 240 206 COM143 4505.33 240 207 COM145 4483.33 240 208 COM147 4461.33 240 209 COM149 4439.33 240 210 COM151 4417.33 240 211 COM153 4395.33 240 212 COM155 4373.33 240 213 COM157 4351.33 240 214 COM159 4329.33 240 215 SEG0 4213 240 216 SEG1 4191 240 217 SEG2 4169 240 218 SEG3 4147 240 219 SEG4 4125 240 220 SEG5 4103 240 221 SEG6 4081 240 222 SEG7 4059 240 223 SEG8 4037 240 224 SEG9 4015 240 225 SEG10 3993 240 226 SEG11 3971 240 227 SEG12 3949 240 228 SEG13 3927 240 229 SEG14 3905 240 230 SEG15 3883 240 231 SEG16 3861 240 232 SEG17 3839 240 233 SEG18 3817 240 234 SEG19 3795 240 235 SEG20 3773 240 236 SEG21 3751 240 PAD NAME X Y 237 SEG22 3729 240 238 SEG23 3707 240 239 SEG24 3685 240 240 SEG25 3663 240 241 SEG26 3641 240 242 SEG27 3619 240 243 SEG28 3597 240 244 SEG29 3575 240 245 SEG30 3553 240 246 SEG31 3531 240 247 SEG32 3509 240 248 SEG33 3487 240 249 SEG34 3465 240 250 SEG35 3443 240 251 SEG36 3421 240 252 SEG37 3399 240 253 SEG38 3377 240 254 SEG39 3355 240 255 SEG40 3333 240 256 SEG41 3311 240 257 SEG42 3289 240 258 SEG43 3267 240 259 SEG44 3245 240 260 SEG45 3223 240 261 SEG46 3201 240 262 SEG47 3179 240 263 SEG48 3157 240 264 SEG49 3135 240 265 SEG50 3113 240 266 SEG51 3091 240 267 SEG52 3069 240 268 SEG53 3047 240 269 SEG54 3025 240 270 SEG55 3003 240 271 SEG56 2981 240 272 SEG57 2959 240 273 SEG58 2937 240 274 SEG59 2915 240 275 SEG60 2893 240 276 SEG61 2871 240 277 SEG62 2849 240 278 SEG63 2827 240 279 SEG64 2805 240 280 SEG65 2783 240 281 SEG66 2761 240 282 SEG67 2739 240 283 SEG68 2717 240 284 SEG69 2695 240 Ver-1.1a 5/63 2009/11/30

PAD NAME X Y 285 SEG70 2673 240 286 SEG71 2651 240 287 SEG72 2629 240 288 SEG73 2607 240 289 SEG74 2585 240 290 SEG75 2563 240 291 SEG76 2541 240 292 SEG77 2519 240 293 SEG78 2497 240 294 SEG79 2475 240 295 SEG80 2453 240 296 SEG81 2431 240 297 SEG82 2409 240 298 SEG83 2387 240 299 SEG84 2365 240 300 SEG85 2343 240 301 SEG86 2321 240 302 SEG87 2299 240 303 SEG88 2277 240 304 SEG89 2255 240 305 SEG90 2233 240 306 SEG91 2211 240 307 SEG92 2189 240 308 SEG93 2167 240 309 SEG94 2145 240 310 SEG95 2123 240 311 SEG96 2101 240 312 SEG97 2079 240 313 SEG98 2057 240 314 SEG99 2035 240 315 SEG100 2013 240 316 SEG101 1991 240 317 SEG102 1969 240 318 SEG103 1947 240 319 SEG104 1925 240 320 SEG105 1903 240 321 SEG106 1881 240 322 SEG107 1859 240 323 SEG108 1837 240 324 SEG109 1815 240 325 SEG110 1793 240 326 SEG111 1771 240 327 SEG112 1749 240 328 SEG113 1727 240 329 SEG114 1705 240 330 SEG115 1683 240 331 SEG116 1661 240 332 SEG117 1639 240 PAD NAME X Y 333 SEG118 1617 240 334 SEG119 1595 240 335 SEG120 1573 240 336 SEG121 1551 240 337 SEG122 1529 240 338 SEG123 1507 240 339 SEG124 1485 240 340 SEG125 1463 240 341 SEG126 1441 240 342 SEG127 1419 240 343 SEG128 1397 240 344 SEG129 1375 240 345 SEG130 1353 240 346 SEG131 1331 240 347 SEG132 1309 240 348 SEG133 1287 240 349 SEG134 1265 240 350 SEG135 1243 240 351 SEG136 1221 240 352 SEG137 1199 240 353 SEG138 1177 240 354 SEG139 1155 240 355 SEG140 1133 240 356 SEG141 1111 240 357 SEG142 1089 240 358 SEG143 1067 240 359 SEG144 1045 240 360 SEG145 1023 240 361 SEG146 1001 240 362 SEG147 979 240 363 SEG148 957 240 364 SEG149 935 240 365 SEG150 913 240 366 SEG151 891 240 367 SEG152 869 240 368 SEG153 847 240 369 SEG154 825 240 370 SEG155 803 240 371 SEG156 781 240 372 SEG157 759 240 373 SEG158 737 240 374 SEG159 715 240 375 SEG160 693 240 376 SEG161 671 240 377 SEG162 649 240 378 SEG163 627 240 379 SEG164 605 240 380 SEG165 583 240 Ver-1.1a 6/63 2009/11/30

PAD NAME X Y 381 SEG166 561 240 382 SEG167 539 240 383 SEG168 517 240 384 SEG169 495 240 385 SEG170 473 240 386 SEG171 451 240 387 SEG172 429 240 388 SEG173 407 240 389 SEG174 385 240 390 SEG175 363 240 391 SEG176 341 240 392 SEG177 319 240 393 SEG178 297 240 394 SEG179 275 240 395 SEG180 253 240 396 SEG181 231 240 397 SEG182 209 240 398 SEG183 187 240 399 SEG184 165 240 400 SEG185 143 240 401 SEG186 121 240 402 SEG187 99 240 403 SEG188 77 240 404 SEG189 55 240 405 SEG190 33 240 406 SEG191 11 240 407 SEG192-11 240 408 SEG193-33 240 409 SEG194-55 240 410 SEG195-77 240 411 SEG196-99 240 412 SEG197-121 240 413 SEG198-143 240 414 SEG199-165 240 415 SEG200-187 240 416 SEG201-209 240 417 SEG202-231 240 418 SEG203-253 240 419 SEG204-275 240 420 SEG205-297 240 421 SEG206-319 240 422 SEG207-341 240 423 SEG208-363 240 424 SEG209-385 240 425 SEG210-407 240 426 SEG211-429 240 427 SEG212-451 240 428 SEG213-473 240 PAD NAME X Y 429 SEG214-495 240 430 SEG215-517 240 431 SEG216-539 240 432 SEG217-561 240 433 SEG218-583 240 434 SEG219-605 240 435 SEG220-627 240 436 SEG221-649 240 437 SEG222-671 240 438 SEG223-693 240 439 SEG224-715 240 440 SEG225-737 240 441 SEG226-759 240 442 SEG227-781 240 443 SEG228-803 240 444 SEG229-825 240 445 SEG230-847 240 446 SEG231-869 240 447 SEG232-891 240 448 SEG233-913 240 449 SEG234-935 240 450 SEG235-957 240 451 SEG236-979 240 452 SEG237-1001 240 453 SEG238-1023 240 454 SEG239-1045 240 455 SEG240-1067 240 456 SEG241-1089 240 457 SEG242-1111 240 458 SEG243-1133 240 459 SEG244-1155 240 460 SEG245-1177 240 461 SEG246-1199 240 462 SEG247-1221 240 463 SEG248-1243 240 464 SEG249-1265 240 465 SEG250-1287 240 466 SEG251-1309 240 467 SEG252-1331 240 468 SEG253-1353 240 469 SEG254-1375 240 470 SEG255-1397 240 471 SEG256-1419 240 472 SEG257-1441 240 473 SEG258-1463 240 474 SEG259-1485 240 475 SEG260-1507 240 476 SEG261-1529 240 Ver-1.1a 7/63 2009/11/30

PAD NAME X Y 477 SEG262-1551 240 478 SEG263-1573 240 479 SEG264-1595 240 480 SEG265-1617 240 481 SEG266-1639 240 482 SEG267-1661 240 483 SEG268-1683 240 484 SEG269-1705 240 485 SEG270-1727 240 486 SEG271-1749 240 487 SEG272-1771 240 488 SEG273-1793 240 489 SEG274-1815 240 490 SEG275-1837 240 491 SEG276-1859 240 492 SEG277-1881 240 493 SEG278-1903 240 494 SEG279-1925 240 495 SEG280-1947 240 496 SEG281-1969 240 497 SEG282-1991 240 498 SEG283-2013 240 499 SEG284-2035 240 500 SEG285-2057 240 501 SEG286-2079 240 502 SEG287-2101 240 503 SEG288-2123 240 504 SEG289-2145 240 505 SEG290-2167 240 506 SEG291-2189 240 507 SEG292-2211 240 508 SEG293-2233 240 509 SEG294-2255 240 510 SEG295-2277 240 511 SEG296-2299 240 512 SEG297-2321 240 513 SEG298-2343 240 514 SEG299-2365 240 515 SEG300-2387 240 516 SEG301-2409 240 517 SEG302-2431 240 518 SEG303-2453 240 519 SEG304-2475 240 520 SEG305-2497 240 521 SEG306-2519 240 522 SEG307-2541 240 523 SEG308-2563 240 524 SEG309-2585 240 PAD NAME X Y 525 SEG310-2607 240 526 SEG311-2629 240 527 SEG312-2651 240 528 SEG313-2673 240 529 SEG314-2695 240 530 SEG315-2717 240 531 SEG316-2739 240 532 SEG317-2761 240 533 SEG318-2783 240 534 SEG319-2805 240 535 SEG320-2827 240 536 SEG321-2849 240 537 SEG322-2871 240 538 SEG323-2893 240 539 SEG324-2915 240 540 SEG325-2937 240 541 SEG326-2959 240 542 SEG327-2981 240 543 SEG328-3003 240 544 SEG329-3025 240 545 SEG330-3047 240 546 SEG331-3069 240 547 SEG332-3091 240 548 SEG333-3113 240 549 SEG334-3135 240 550 SEG335-3157 240 551 SEG336-3179 240 552 SEG337-3201 240 553 SEG338-3223 240 554 SEG339-3245 240 555 SEG340-3267 240 556 SEG341-3289 240 557 SEG342-3311 240 558 SEG343-3333 240 559 SEG344-3355 240 560 SEG345-3377 240 561 SEG346-3399 240 562 SEG347-3421 240 563 SEG348-3443 240 564 SEG349-3465 240 565 SEG350-3487 240 566 SEG351-3509 240 567 SEG352-3531 240 568 SEG353-3553 240 569 SEG354-3575 240 570 SEG355-3597 240 571 SEG356-3619 240 572 SEG357-3641 240 Ver-1.1a 8/63 2009/11/30

PAD NAME X Y 573 SEG358-3663 240 574 SEG359-3685 240 575 SEG360-3707 240 576 SEG361-3729 240 577 SEG362-3751 240 578 SEG363-3773 240 579 SEG364-3795 240 580 SEG365-3817 240 581 SEG366-3839 240 582 SEG367-3861 240 583 SEG368-3883 240 584 SEG369-3905 240 585 SEG370-3927 240 586 SEG371-3949 240 587 SEG372-3971 240 588 SEG373-3993 240 589 SEG374-4015 240 590 SEG375-4037 240 591 SEG376-4059 240 592 SEG377-4081 240 593 SEG378-4103 240 594 SEG379-4125 240 595 SEG380-4147 240 596 SEG381-4169 240 597 SEG382-4191 240 598 SEG383-4213 240 599 COM158-4329.33 240 600 COM156-4351.33 240 601 COM154-4373.33 240 602 COM152-4395.33 240 603 COM150-4417.33 240 604 COM148-4439.33 240 605 COM146-4461.33 240 606 COM144-4483.33 240 607 COM142-4505.33 240 608 COM140-4527.33 240 609 COM138-4549.33 240 610 COM136-4571.33 240 611 COM134-4593.33 240 612 COM132-4615.33 240 613 COM130-4637.33 240 614 COM128-4659.33 240 615 COM126-4681.33 240 616 COM124-4703.33 240 617 COM122-4725.33 240 618 COM120-4747.33 240 619 COM118-4769.33 240 620 COM116-4791.33 240 PAD NAME X Y 621 COM114-4813.33 240 622 COM112-4835.33 240 623 COM110-4857.33 240 624 COM108-4879.33 240 625 COM106-4901.33 240 626 COM104-4923.33 240 627 COM102-4945.33 240 628 COM100-4967.33 240 629 COM98-4989.33 240 630 COM96-5011.33 240 631 COM94-5033.33 240 632 COM92-5055.33 240 633 COM90-5077.33 240 634 COM88-5099.33 240 635 COM86-5121.33 240 636 COM84-5143.33 240 637 COM82-5165.33 240 638 COM80-5187.33 240 639 COM78-5209.33 240 640 COM76-5231.33 240 641 COM74-5253.33 240 642 COM72-5275.33 240 643 COM70-5297.33 240 644 COM68-5319.33 240 645 COM66-5341.33 240 646 COM64-5363.33 240 647 COM62-5385.33 240 648 COM60-5407.33 240 649 COM58-5429.33 240 650 COM56-5451.33 240 651 COM54-5473.33 240 652 COM52-5495.33 240 653 COM50-5517.33 240 654 COM48-5539.33 240 655 COM46-5561.33 240 656 COM44-5583.33 240 657 COM42-5605.33 240 658 COM40-5627.33 240 659 COM38-5649.33 240 660 COM36-5606.5 111.5 661 COM34-5606.5 89.5 662 COM32-5606.5 67.5 663 COM30-5606.5 45.5 664 COM28-5606.5 23.5 665 COM26-5606.5 1.5 666 COM24-5606.5-20.5 667 COM22-5606.5-42.5 668 COM20-5606.5-64.5 Ver-1.1a 9/63 2009/11/30

PAD NAME X Y 669 COM18-5606.5-86.5 670 COM16-5606.5-108.5 671 COM14-5606.5-130.5 672 COM12-5606.5-152.5 673 COM10-5606.5-174.5 674 COM8-5606.5-196.5 675 COM6-5606.5-218.5 676 COM4-5606.5-240.5 677 COM2-5606.5-262.5 678 COM0-5606.5-284.5 Unit : um Ver-1.1a 10/63 2009/11/30

BLOCK DIAGRAM IF[3:1] D[7:0] ERD RWR A0 CSB VD1S TE TCAP RSTB Ver-1.1a 11/63 2009/11/30

PIN DESCRIPTION Power System Name Type Description VDD1 Power VDD1 is the power of interface I/O circuit. VDD2~5 VDDX VSS1 VSS2 VSS4 VSSX VD1S Power Power Power Power Power Input VDD2 is the analog power for internal booster. VDD3~5 are the analog power for LCD driver. VDD2~5 and VDDX are separated in ITO and connected together by FPC or PCB. Digital power for OSC circuit. VDD2~5 and VDDX are separated in ITO and connected together by FPC or PCB. Ground of interface, logic (VSS1) and OSC (VSSX) circuits. Ground system should be connected together by FPC or PCB. Ground of booster (VSS2) and LCD (VSS4) driver. Ground system should be connected together by FPC or PCB. Ground of OSC circuit. Ground system should be connected together by FPC or PCB. Digital power source selection. VD1S = L : the power source of digital circuit is VDD1. VD1S = H : the power source of digital circuit is internal regulator. VDD1 (TYP.) Cap. of VD1 and VSS Level of VD1S 1.8 Unnecessary VSS1 2.8 Necessary VDD1 3.0 Necessary VDD1 3.3 Necessary VDD1 VD1I VD1O V0O V0I V0S XV0O XV0I XV0S VGO VGI VGS VM Power Power Power Input Power Power Input Power Power Input Power VD1I is the power source of digital circuits. VD1O is the VD1 output. VD1I and VD1O should be connected together by FPC or PCB. Positive operating voltage of COM-drivers. V0O is the output of the positive Vop generator. V0I is the positive Vop supply of LCD drivers. V0S is the sensor of the positive Vop generator. V0O, V0I & V0S should be separated on ITO and be connected together by FPC. Negative operating voltage of COM-drivers. XV0O is the output of the negative Vop generator. XV0I is the negative Vop supply of LCD drivers. XV0S is the sensor of the negative Vop generator. XV0O, XV0I & XV0S should be separated on ITO and be connected together by FPC. VG is the power of SEG-drivers. VM is the non-select voltage level of COM-drivers. VGO is the output of the VG regulator. VGI is the supply of SEG-drivers. VGS is the sensor of the VG regulator. VGO, VGI & VGS should be separated on ITO and be connected together by FPC. Be sure the relationships (as shown below) among the LCD driving voltages: V0 VG VM VSS XV0; VDDA-0.7 VM 0.9V; and 2*VDDA-0.7 VG 1.8V When this IC is operating, VG and VM are generated according to the bias setting shown below: LCD Bias VG VM 1/N Bias (2/N) x V0 (1/N) x V0 Note: N = 9~14 Ver-1.1a 12/63 2009/11/30

LCD Driver Outputs Name Type Description SEG0 to SEG383 Output LCD SEG-driver outputs. The display data and the polar-signal (M) control the output voltage of SEG-driver. Display Data M Segment Driver Output Voltage Normal Display Reverse Display H H VG VSS H L VSS VG L H VSS VG L L VG VSS Display OFF, Sleep-In mode VSS VSS COM0 to COM159 Output LCD COM-driver outputs. The internal scanning data and the polar-signal (M) control the output voltage of COM-driver. Scan data M Common Driver Output Voltage H H XV0 H L V0 L H VM L L VM Display OFF, Sleep-In mode VSS Microprocessor Interface Name Type Description RSTB Input Reset input pin. When RSTB is L, internal initialization procedure is executed. IF[3:1] CSB A0 RWR Input Input Input Input These pins select interface operation mode. IF3 IF2 IF1 MPU interface type H H L 80 series 8-bit parallel H L L 68 series 8-bit parallel L H H 8-bit serial (4-Line) L H L 9-bit serial (3-Line) Note: Refer to Interface Selection for detailed information. Chip select input pin. CSB= L : This chip is selected and the MPU interface is active. CSB= H : This chip is not selected and the MPU interface is disabled (D[7:0] are high impedance). The function of this pin is different in parallel and serial interface. In parallel interface: A0 is register selection input. A0 = "H": inputs on data bus are display data; A0 = "L": inputs on data bus are command. In serial interface: this pad will be used as SCL (serial-clock) input Read / Write execution control pin. (This pin is only used in parallel interface) MPU Type RWR Description 6800-series 8080-series R/W /WR Read / Write control input pin R/W = H : read R/W = L : write Write enable clock input pin. The data are latched at the rising edge of the /WR signal. This pin is not used in serial interfaces and should be connected to VDD1. Ver-1.1a 13/63 2009/11/30

Name Type Description Read / Write execution control pin. (This pin is only used in parallel interface) MPU Type ERD Description Read / Write control input pin. R/W = H : When E is H, data bus is in output status. 6800-series E ERD Input R/W = L : The data are latched at the falling edge of the E signal. 8080-series /RD Read enable input pin. When /RD is L, data bus is in output status. This pin is not used in serial interfaces and should be connected to VDD1. D[7:0] I/O The bi-directional data bus of the MPU interface. When CSB is H, they are high impedance. If using serial interface: D0 is the SDA signal in 4-Line & 3-Line interface. D1 is the A0 signal in 4-Line interface. Note: 1. After VDD1 is turned ON, all MPU interface pins should not be left OPEN. 2. The un-used pins should be connected to VDD1. OTP Pins Name Type Description VPP EXTB Power Input The programming power supply of the built-in OTP. Apply external power (6.5~6.75V) here when programming (> 8mA for successful programming). EXTB= L : Enable the extension operation mode. When programming OTP, connect EXTB to VSS1 externally. This pin has an internal pull-high resistor. Please leave this pin OPEN after special operation. Test Pins Name Type Description CLS Test Reserved for testing only. Please fix this pin to VDD1. CL Test Reserved for testing only. Leave this pin open. TCAP Test Reserved for testing only. Leave this pin open. VREF Test Reserved for testing only. Leave this pin open. TE Test Reserved for testing only. Leave this pin open. Ver-1.1a 14/63 2009/11/30

ITO Resistance Limitation Pin Name ITO Resister VDDX, VDD1~VDD5, VSSX, VSS1, VSS2, VSS4, V0I, V0O, V0S, XV0I, XV0O, XV0S, VM <100Ω VPP, VGI, VGO, VGS <50Ω A0, ERD, RWR, CSB, D[7:0], (SDA), (SCL), TE <700Ω RSTB <10KΩ IF[3:1], CLS, EXTB <1KΩ TCAP, CL, VREF Floating Note: 1. Make sure that the ITO resistance of COM0 ~ COM159 is equal, and so is it of SEG0 ~ SEG383. 2. These Limitations include the bottleneck of ITO layout. 3. Refer to the application note for ITO layout guideline. Ver-1.1a 15/63 2009/11/30

FUNCTION DESCRIPTION Microprocessor Interface Chip Select Input CSB pin is used for chip selection. ST7586S can interface with an MPU when CSB is "L". If CSB is H, the inputs of A0, ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 3-Line and 4-Line serial interfaces, the internal shift register and serial counter are reset when CSB is H. Interface Selection The interface selection is controlled by IF[3..1] pins. Please refer to the table below: Setting IF3 IF2 IF1 MPU Type Table 1 Interface Pin Function CSB A0 RWR ERD D[7:0] H H L Parallel 8080 series MPU /WR /RD A0 D[7:0] H L L Parallel 6800 series MPU R/W E CSB L H H Serial 4-Line series MPU -- -- D1=A0; D0=SDA. D[7:2] are not used. SCL L H L Serial 3-Line series MPU -- -- D0=SDA. D[7:1] are not used. Note: The un-used pins are marked as -- and should be fixed to H by VDD1. Parallel Interface When parallel interface is selected, the interface transmission type will be determined by the combination of the control signals. Please refer to the table below: 8080 series MPU 6800 series MPU /WR /RD R/W E Table 2 A0 CSB Interface Transmission Type H L L Write Command H L H Write Display Data or Parameter L H H H Read Display Data or Parameter Start H H H Note: Reading Display Data or Parameter is specified by the instruction before the read operation. Read Display Data or Parameter Stop Serial Interface In serial interface mode (4-Line or 3-Line), IC is active when CSB is L. Control signals (SDA, SCL and A0 for 4-Line) are enabled when CSB is L. When CSB is H, the MPU interface is not active and the internal shift register and counter are reset. It is recommended to set CSB to H after each byte transmission. In 4-Line serial interface, A0 signal is latched at the 8 th rising edge of the SCL signal (refer to Fig. 1). Fig. 1 Write-Operation of 4-Line Serial Interface Ver-1.1a 16/63 2009/11/30

In 3-Line interface, A0 signal is not available and the 1 st output of SDA will be treated as A0 flag (refer to Fig. 2). Fig. 2 Write-Operation of 4-Line Serial Interface Ver-1.1a 17/63 2009/11/30

Display Data RAM (DDRAM) ST7586S containing a 384x160x2 bit static RAM stores the display data. The display data RAM (DDRAM) stores the pixel data of the LCD. The built-in DDRAM is an addressable memory array with 384 columns by 160 rows. ST7586S provides two kinds of display modes (monochrome mode and 4-level gray scale mode) and a fast-addressing mode for fast updating display data. Each column address represents 3 sub-columns. For example, setting the column address to 01h means that upcoming 8 bits data is addressing to column 3; column 4 and column 5 respectively (refer to Fig. 3 and Fig. 4). The display data which is written by MCU will be stored in DDRAM with the format of D7 at the left and D0 at the right when MX=0 (refer to Fig. 3 and Fig. 4). The row address is directly related to the row output number. The LCD controller reads the pixel data in DDRAM, and then it outputs to COM/SEG pad. While the LCD controller operates independently, display data can be written into DDRAM at the same time and data is also being displayed on LCD panel without causing the abnormal display. SEG SEG SEG SEG SEG SEG 3N 3N+1 3N+2 3N 3N+1 3N+2 (3 Bits) (3 Bits) (2 Bits) (3 Bits) (3 Bits) (2 Bits) D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 1 0 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 Display Data RAM Liquid Crystal Display 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 Column 0 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 381 Column 382 Column 383 SEG 0 SEG 1 SEG 2 SEG 3 SEG 4 SEG 5 SEG 6 SEG 381 SEG 382 SEG 383 3 Bits Data 2 Bits Data D7 (D4) D6 (D3) D5 (D2) DDRAM LCD D1 D0 DDRAM LCD 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 Fix LSB to 0 if Gray Mode Fig. 3 DDRAM Mapping (4-Level Gray Scale Mode) Ver-1.1a 18/63 2009/11/30

SEG SEG SEG SEG SEG SEG 3N 3N+1 3N+2 3N 3N+1 3N+2 (3 Bits) (3 Bits) (2 Bits) (3 Bits) (3 Bits) (2 Bits) D7 D6 D5 D4 D3 D2 D1 D0 1 1 X 0 0 X 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 X 1 1 X 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 Display Data RAM Liquid Crystal Display 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 Column 0 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 381 Column 382 Column 383 SEG 0 SEG 1 SEG 2 SEG 3 SEG 4 SEG 5 SEG 6 SEG 381 SEG 382 SEG 383 3 Bits Data 2 Bits Data D7 (D4) D6 (D3) D5 (D2) DDRAM LCD D1 D0 DDRAM LCD 1 1 X 1 1 1 1 1 1 0 0 X 0 0 0 0 0 0 Fig. 4 DDRAM Mapping (Monochrome Mode) 384 Columns Column Address 00h 01h 02h 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 160 Rows 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh Row Address D7 D0 Fig. 5 DDRAM Format Ver-1.1a 19/63 2009/11/30

Addressing In order to allow MCU accessing display data continuously, the address counter is automatically increasing by one (+1) after accessing each byte of display data (i.e. White Display Data in all interface or Read Display Data in parallel interface). The locations of RAM are addressed by the address pointers (XS, XE, YS and YE). The address ranges are X=0~127 (column address) and Y=0~159 (row address). Addresses outside these range is not allowed. Before writing to DDRAM, a window must be defined for the incoming display data. By specifying the address pointers XS, XE, YS and YE, a window is established. The instruction registers XS and YS identify the start addresses while XE and YE identifying the end addresses. For example, the whole display range will be written via the following values to define 384x160: XS=0 (00h), YS=0 (00h) and XE=127 (7Fh), YE=159 (9Fh). Column Address Circuit The column address of DDRAM is specified by the Set Column Address instruction. Each column address includes three sub-columns Column N, Column N+1 and Column N+2 respectively ( N is the column address value). The column address counter is increased by one (+1) after each byte of display data accessed (write/read). The starting column address is defined by XS and the ending column address is defined by XE. The column address counter will be returned to the starting column address (XS) immediately if the increment of the column address exceeds the boundary column address (XE). Row Address Circuit The circuit provides the row address of DDRAM. The row address is increased by one (+1) after the column address counter is over XE. The row address will be returned to starting row address (YS) immediately when the row address is increased by one over the ending row address (YE). Ver-1.1a 20/63 2009/11/30

LCD Display Function DDRAM Map to LCD Driver Output The internal relation between DDRAM and LCD driver circuit (SEG/COM output path) with different MX or MY setting is illustrated below. Column Address MX=0 Row Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh MX=1 Start Line: S[7..0]=00h First Output COM: FC[7..0]=00h COM PAD COM0 COM159 COM1 COM158 COM2 COM157 COM3 COM156 COM4 COM155 COM5 COM154 COM6 COM153 COM7 COM152 COM8 COM151 COM9 COM150 COM10 COM149 COM11 COM148 COM12 COM147 COM13 COM146 COM14 COM145 COM15 COM144 COM16 COM143 COM17 COM142 COM18 COM141 COM19 COM140 COM20 COM139 COM21 COM138 COM22 COM137 COM23 COM136 COM24 COM135 COM25 COM134 COM26 COM133 COM27 COM132 COM28 COM131 COM29 COM130 COM30 COM129 COM31 COM128 COM32 COM127 COM33 COM126 COM34 COM125 COM35 COM124 COM36 COM123 COM37 COM122 COM38 COM121 COM39 COM120 COM40 COM119 COM41 COM118 COM42 COM117 COM43 COM116 COM44 COM115 COM45 COM114 COM46 COM113 COM47 COM112 COM48 COM111 COM49 COM110 COM50 COM109 COM51 COM108 COM52 COM107 COM53 COM106 COM54 COM105 COM55 COM104 COM56 COM103 COM57 COM102 COM58 COM101 COM59 COM100 COM60 COM99 COM61 COM98 COM62 COM97 COM63 COM96 MY=0 MY=1 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh COM128 COM129 COM130 COM131 COM132 COM133 COM134 COM135 COM136 COM137 COM138 COM139 COM140 COM141 COM142 COM143 COM144 COM145 COM146 COM147 COM148 COM149 COM150 COM151 COM152 COM153 COM154 COM155 COM156 COM157 COM158 COM159 COM31 COM30 COM29 COM28 COM27 COM26 COM25 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 MX=0 SEG PAD MX=1 Fig. 6 DDRAM Display Direction Ver-1.1a 21/63 2009/11/30

Line Address Circuit This circuit assigns DDRAM a Line Address corresponding to the first line (setting by instruction of First Output COM) of display. Therefore, by setting Line Address repeatedly, ST7586S is possible to realize the screen scrolling without changing the content of DDRAM as shown in Fig. 7. Column Address MX=0 Row Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh MX=1 COM PAD COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 MY=0 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh COM128 COM129 COM130 COM131 COM132 COM133 COM134 COM135 COM136 COM137 COM138 COM139 COM140 COM141 COM142 COM143 COM144 COM145 COM146 COM147 COM148 COM149 COM150 COM151 COM152 COM153 COM154 COM155 COM156 COM157 COM158 COM159 MX=0 SEG PAD MX=1 Fig. 7 Display Data RAM Map (1/160 Duty) Ver-1.1a 22/63 2009/11/30

Partial Display This function is defining the visible display area as illustrated in Fig. 8. The different partial display area setting will be changing frame rate or Vop to avoid abnormal display. The recommended range of partial display area setting is defined from 64 duty to 160 duty. The partial display setting is combining the instructions of Partial Display and Partial Display Area. Display Area Display Area Display Area Fig. 8 Partial Display Definition Rolling Scroll This function is determined by the instructions of Scroll Area and Start Line. TA, SA and BA meaning Top Area, Scrolling Area and Bottom Area respectively. The instruction of Scroll Area setting must correspond to TA+SA+BA=160. Depending on the Scroll Area setting, the setting range of Start Line must correspond to TA S[7..0]<(TA+SA). Start Line S[7..0] Fig. 9 Scroll Definition Ver-1.1a 23/63 2009/11/30

Liquid Crystal Driver Power Circuit The built-in power circuits generate the voltage levels which are necessary to drive the liquid crystal. It consumes low power with the fewest external component. The built-in power system has voltage booster, voltage regulator and voltage follower circuits. Before power ST7586S is OFF, a Power OFF procedure is needed. Please refer to the OPERATION FLOW section. External Component of Power Circuit The recommended external power components need only three capacitors. The detailed values of these three capacitors are determined by panel size and loading. Fig. 10 Power Circuit Ver-1.1a 24/63 2009/11/30

Temperature Gradient Selection Circuit SET V0 with temperature compensation (Temperature 24 C) There are 16-line slopes in each temperature step, and customer can select one line slope of temperature compensation coefficient for each temperature step. Each temperature step is 8 C. Please see Fig. 11 as below. Fig. 11 Temperature Compensation Coefficient Selection In instruction Temperature Gradient Compensation each parameter MTx, where x=0, 1, 2,, E, F has a setting value between 0 and 15. MTx=0 results in Mx=0V increment on V0, MTx=1 results in Mx=5mV increment,, MTx=15 results in Mx=15x5mV=75mV increment. Note that each MTx individually corresponds to a temperature interval; the Mx means temperature gradient slope coefficient. The relations between Mx and V0 quantity due to temperature V0(T) are described in the equation shown in Table 3. Temerature Range Equation V0(T) at temperature=t C -40 C T < -32 C V0(T) = V0(T24) + (-32 - T) x M0 + (M1 + M2 + M3 + M4 + M5 + M6 + M7) x 8-32 C T < -24 C V0(T) = V0(T24) + (-24 - T) x M1 + (M2 + M3 + M4 + M5 + M6 + M7) x 8-24 C T < -16 C V0(T) = V0(T24) + (-16 - T) x M2 + (M3 + M4 + M5 + M6 + M7) x 8-16 C T < -8 C V0(T) = V0(T24) + (-8 - T) x M3 + (M4 + M5 + M6 + M7) x 8-8 C T < 0 C V0(T) = V0(T24) + (0 - T) x M4 + (M5 + M6 + M7) x 8 0 C T < 8 C V0(T) = V0(T24) + (8 - T) x M5 + (M6 + M7) x 8 8 C T < 16 C V0(T) = V0(T24) + (16 - T) x M6 + M7 x 8 16 C T < 24 C V0(T) = V0(T24) + (24 - T) x M7 24 C T < 32 C V0(T) = V0(T24) - (T - 24) x M8 32 C T < 40 C V0(T) = V0(T24) - (T - 32) x M9 M8 x 8 40 C T < 48 C V0(T) = V0(T24) - (T - 40) x M10 (M9 + M8) x 8 48 C T < 56 C V0(T) = V0(T24) - (T - 48) x M11 (M10 + M9 + M 8) x 8 56 C T < 64 C V0(T) = V0(T24) - (T - 56) x M12 (M11 + M10 + M9 + M8) x 8 64 C T < 72 C V0(T) = V0(T24) - (T - 64) x M13 (M12 + M11 + M10 + M9 + M8) x 8 72 C T < 80 C V0(T) = V0(T24) - (T - 72) x M14 (M13 + M12 + M11 + M10 + M9 + M8) x 8 80 C T < 88 C V0(T) = V0(T24) - (T - 80) x M15 (M14 + M13 + M12 + M11 + M10 + M9 + M8) x 8 Table 3 Ver-1.1a 25/63 2009/11/30

Fig. 12 Temperature Gradient Compensation Note: Please make sure to avoid any kind of heating source near ST7586S such as back light, to prevent Vop is not anticipative because of temperature compensation circuit is working. Ver-1.1a 26/63 2009/11/30

Frequency Temperature Gradient Compensation Coefficient Register Loading Detection ST7586S will auto-switch frame rate in different temperature such as Fig. 13. TA, TB and TC are frame rate switching temperature which can be defined by customer with instruction Temperature Range. FRA, FRB, FRC and FRD are switched frame rate which also can be defined by customer with instruction Frame Rate. The frame rate range is from 18.75Hz to 170Hz. Frame Rate (Hz) TA TB TC 80 FRD 70 60 50 40 5 C 5 C 5 C FRC FRB FRA 30-40 -30-20 -10 0 10 20 30 40 50 60 70 80 90 Temperature ( C) Fig. 13 Frame Rate Ver-1.1a 27/63 2009/11/30

RESET CIRCUIT Setting RSTB pin to L (hardware reset) or instruction RESET (software reset) can initialize internal function. Please note the hardware reset is not same as the software reset. Generally, VDD1 is not stable at the time that the system power is just turned ON. The hardware reset is required to initialize internal registers after VDD1 is stable. Initialization by RSTB pin is essential before operating. The default values of registers are listed below: Procedure After After Hardware Reset Software Reset DDRAM Content No Change No Change Column Address Start Address 00h 00h End Address 7Fh 7Fh Row Address Start Address 00h 00h End Address 9Fh 9Fh Power Save Mode Sleep IN Mode Sleep IN Mode Partial Mode Partial Mode OFF Partial Mode OFF Partial Display Area Start Address 00h 00h End Address 9Fh 9Fh Inverse Display Inverse Display OFF Inverse Display OFF All Pixel ON All Pixel ON Mode OFF All Pixel ON Mode OFF Display ON/OFF Display OFF Display OFF Display Control SEG Direction SEG0 SEG383 No Change COM Direction COM0 COM159 No Change Start Line 00h 00h Display Duty 9Fh 9Fh First Output COM 00h 00h N-Line Inversion 8Ch 8Ch Read Modify Write Disable Disable Vop[8:0] 142h 142h BIAS 1/10 1/10 Booster Level x8 x8 Table 4 Ver-1.1a 28/63 2009/11/30

INSTRUCTION TABLE INSTRUCTION A0 R/W COMMAND BYTE D7 D6 D5 D4 D3 D2 D1 D0 NOP 0 0 0 0 0 0 0 0 0 0 No operation RESET 0 0 0 0 0 0 0 0 0 1 Software reset Power Save 0 0 0 0 0 1 0 0 0 SLP Partial Mode 0 0 0 0 0 1 0 0 1 PTL Inverse Display 0 0 0 0 1 0 0 0 0 INV All Pixel ON/OFF 0 0 0 0 1 0 0 0 1 AP Display ON/OFF 0 0 0 0 1 0 1 0 0 DSP Set Column Address Set Row Address Write Display Data Read Display Data Partial Display Area Scroll Area Display Control Start Line 0 0 0 0 1 0 1 0 1 0 1 0 XS15 XS14 XS13 XS12 XS11 XS10 XS9 XS8 1 0 XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS0 1 0 XE15 XE14 XE13 XE12 XE11 XE10 XE9 XE8 1 0 XE7 XE6 XE5 XE4 XE3 XE2 XE1 XE0 0 0 0 0 1 0 1 0 1 1 1 0 YS15 YS14 YS13 YS12 YS11 YS10 YS9 YS8 1 0 YS7 YS6 YS5 YS4 YS3 YS2 YS1 YS0 1 0 YE15 YE14 YE13 YE12 YE11 YE10 YE9 YE8 1 0 YE7 YE6 YE5 YE4 YE3 YE2 YE1 YE0 0 0 0 0 1 0 1 1 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 0 1 1 1 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 1 1 0 0 0 0 1 0 PTS15 PTS14 PTS13 PTS12 PTS11 PTS10 PTS9 PTS8 1 0 PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0 1 0 PTE15 PTE14 PTE13 PTE12 PTE11 PTE10 PTE9 PTE8 1 0 PTE7 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 0 0 0 0 1 1 0 0 1 1 1 0 TA7 TA6 TA5 TA4 TA3 TA2 TA1 TA0 1 0 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 1 0 BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0 0 0 0 0 1 1 0 1 1 0 1 0 MY MX 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 S7 S6 S5 S4 S3 S2 S1 S0 DESCRIPTION Set power save mode SLP=0: Sleep in mode SLP=1: Sleep out mode Set partial mode PTL=0: Partial mode on PTL=1: Partial mode off Set inverse display mode INV=0: Normal display INV=1: Inverse display Set all pixel on mode AP=0: All pixel off mode AP=1: All pixel on mode Set LCD display DSP=0: Display off DSP=1: Display on Set column address Starting column address: 00h XS 7Fh Ending column address: XS XE 7Fh Set row address Starting row address: 00h YS 9Fh Ending row address: YS YE 9FH Write display data to DDRAM Read display data from DDRAM Set partial area Partial display address start: 00h PTS 9Fh Partial display address end: 00h PTE 9Fh Display Area: 64 Duty 160 Set scroll area Top Area: TA=00h~A0h Scrolling Area: SA=00h~A0h Bottom Area: BA=00h~A0h TA+SA+BA=160 Set scan direction of COM and SEG MY=0: COM0 COM159 MY=1: COM159 COOM0 MX=0: SEG0 SEG383 MX=1: SEG383 SEG0 Set display start line S=00h~9Fh Ver-1.1a 29/63 2009/11/30

INSTRUCTION A0 R/W COMMAND BYTE D7 D6 D5 D4 D3 D2 D1 D0 Display Mode 0 0 0 0 1 1 1 0 0 M Enable DDRAM 0 0 0 0 1 1 1 0 1 0 Interface 1 0 0 0 0 0 0 0 1 0 Display Duty First Output COM FOSC Divider Partial Display N-Line Inversion 0 0 1 0 1 1 0 0 0 0 1 0 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 0 0 1 0 1 1 0 0 0 1 1 0 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 FOD1 FOD0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 M 0 0 NL4 NL3 NL2 NL1 NL0 Read Modify Write 0 0 1 0 1 1 1 0 0 RMW Set Vop 0 0 1 1 0 0 0 0 0 0 1 0 Vop7 Vop6 Vop5 Vop4 Vop3 Vop2 Vop1 Vop0 1 0 - - - - - - - Vop8 DESCRIPTION Set display mode M=0: Gray mode M=1: Monochrome mode Enable DDRAM interface Set display duty DT=03h~9Fh Set first output COM FC=00h~9Fh Set FOSC dividing ratio Set partial display mode Set N-Line inversion Read modify write control RMW=0: Enable read modify write RMW=1: Disable read modify write Set Vop Vop Increase 0 0 1 1 0 0 0 0 0 1 Vop increase one step Vop Decrease 0 0 1 1 0 0 0 0 1 0 Vop decrease one step BIAS System Booster Level Vop Offset Analog Control Auto Read Control OTP WR/RD Control 0 0 1 1 0 0 0 0 1 1 1 0 - - - - - BS2 BS1 BS0 0 0 1 1 0 0 0 1 0 0 1 0 - - - - - BST2 BST1 BST0 0 0 1 1 0 0 0 1 1 1 1 0 0 VOF6 VOF5 VOF4 VOF3 VOF2 VOF1 VOF0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 XARD 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 WR /RD 0 0 0 0 0 Set BIAS system Set booster level Set Vop offset Enable analog circuit Auto read control XARD=0: Enable auto read XARD=1: Disable auto read OTP WR/RD control WR/RD=0: Enable OTP read WR/RD=1: Enable OTP write OTP Control Out 0 0 1 1 1 0 0 0 0 1 OTP control out OTP Write 0 0 1 1 1 0 0 0 1 0 OTP programming procedure OTP Read 0 0 1 1 1 0 0 0 1 1 OTP up-load procedure OTP Selection Control 0 0 1 1 1 0 0 1 0 0 1 0 0 Ctrl 0 1 1 0 0 1 OTP Programming 0 0 1 1 1 0 0 1 0 1 Setting 1 0 0 0 0 0 1 1 1 1 OTP selection control Ctrl=0: Disable OTP Ctrl=1: Enable OTP OTP programming setting Ver-1.1a 30/63 2009/11/30

INSTRUCTION A0 R/W Frame Rate (Gray Scale Mode) Frame Rate (Monochrome Mode) Temperature Range Temperature Gradient Compensation COMMAND BYTE D7 D6 D5 D4 D3 D2 D1 D0 0 0 1 1 1 1 0 0 0 0 1 0 - - - FRA4 FRA3 FRA2 FRA1 FRA0 1 0 - - - FRB4 FRB3 FRB2 FRB1 FRB0 1 0 - - - FRC4 FRC3 FRC2 FRC1 FRC0 1 0 - - - FRD4 FRD3 FRD2 FRD1 FRD0 0 0 1 1 1 1 0 0 0 1 1 0 - - - FRA4 FRA3 FRA2 FRA1 FRA0 1 0 - - - FRB4 FRB3 FRB2 FRB1 FRB0 1 0 - - - FRC4 FRC3 FRC2 FRC1 FRC0 1 0 - - - FRD4 FRD3 FRD2 FRD1 FRD0 0 0 1 1 1 1 0 0 1 0 1 0 - TA6 TA5 TA4 TA3 TA2 TA1 TA0 1 0 - TB6 TB5 TB4 TB3 TB2 TB1 TB0 1 0 - TC6 TC5 TC4 TC3 TC2 TC1 TC0 0 0 1 1 1 1 0 1 0 0 1 0 MT13 MT12 MT11 MT10 MT03 MT02 MT01 MT00 1 0 MT33 MT32 MT31 MT30 MT23 MT22 MT21 MT20 1 0 MT53 MT52 MT51 MT50 MT43 MT42 MT41 MT40 1 0 MT73 MT72 MT71 MT70 MT63 MT62 MT61 MT60 1 0 MT93 MT92 MT91 MT90 MT83 MT82 MT81 MT80 1 0 MTB3 MTB2 MTB1 MTB0 MTA3 MTA2 MTA1 MTA0 1 0 MTD3 MTD2 MTD1 MTD0 MTC3 MTC2 MTC1 MTC0 1 0 MTF3 MTF2 MTF1 MTF0 MTE3 MTE2 MTE1 MTE0 DESCRIPTION Frame rate setting in different temperature range (Gray scale mode) Frame rate setting in different temperature range (Monochrome mode) Temperature range setting Set temperature gradient compensation coefficient Ver-1.1a 31/63 2009/11/30

INSTRUCTION DESCRIPTION NOP No Operation instruction. ST7586S will do nothing when receiving this instruction. 0 0 0 0 0 0 0 0 0 0 No operation RESET When this instruction is issued, the software reset procedure is started. This instruction resets the software reset default value and keeps the DDRAM content. 0 0 0 0 0 0 0 0 0 1 Software reset Power Save When ST7586S enters the sleep in mode, the mode causes the LCD module entering the minimum power consumption mode. All of operations (e.g. the DC/DC converter, internal oscillator and panel scanning) are stopped. When ST7586S enters sleep out mode (exit sleep in mode), the DC/DC converter and internal oscillator are started. 0 0 0 0 0 1 0 0 0 SLP SLP=0: Sleep in mode SLP=1: Sleep out mode Partial Mode When ST7586S enters the partial display mode, the partial area is described by Partial Display Area instruction. The different partial display area setting will be changing frame rate or Vop to avoid abnormal display. 0 0 0 0 0 1 0 0 1 PTL PTL=0: Partial mode on PTL=1: Partial mode off Inverse Display This instruction would inverse the scanned data without recover the content of DDRAM. As the result, the ON and OFF status of all pixels are interchanged. 0 0 0 0 1 0 0 0 0 INV INV=0: Normal display INV=1: Inverse display All Pixel ON/OFF When ST7586S enters all pixels on or off mode, all display pixels are turned on or off regardless of the content of DDRAM. The content of DDRAM is not changed by setting All Pixel ON/OFF. After execute the instruction of Partial Mode, the display mode will exit all pixel on/off mode then enter normal mode. 0 0 0 0 1 0 0 0 1 AP AP=0: All pixel off mode AP=1: All pixel on mode Display ON/OFF This instruction turns the display ON or OFF. When ST7586S enters display off, the display output is blank regardless of the content of DDRAM. When ST7586S enters display on (exit display off), the display output is according to content of DDRAM. 0 0 0 0 1 0 1 0 0 DSP DSP=0: Display off DSP=1: Display on Ver-1.1a 32/63 2009/11/30

Set Column Address This instruction is used to define area of DDRAM where MCU can access. The column address is automatically increased by one (+1) after each DDRAM access. After the ending column address XE[15..0], column address returns to starting column address XS[15..0]. The XS[15..0] setting that must be equal to or less than XE[15..0]. When XS[15..0] or XE[15..0] is great than 7Fh, out of DDRAM range will be ignored. 0 0 0 0 1 0 1 0 1 0 1 0 XS15 XS14 XS13 XS12 XS11 XS10 XS9 XS8 1 0 XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS0 1 0 XE15 XE14 XE13 XE12 XE11 XE10 XE9 XE8 1 0 XE7 XE6 XE5 XE4 XE3 XE2 XE1 XE0 XS: Starting column address XE: Ending column address Set Row Address This instruction is used to define area of DDRAM where MCU can access. The row address is automatically increased by one (+1) after column address counter is over XE[15..0]. The row address will return to starting row address YS[15..0] immediately when the row address increases one over the ending row address YE[15..0]. The YS[15..0] setting must be equal to or less than YE[15..0]. When YS[15..0] or YE[15..0] is great than 9Fh, out of DDRAM range will be ignored. 0 0 0 0 1 0 1 0 1 1 1 0 YS15 YS14 YS13 YS12 YS11 YS10 YS9 YS8 1 0 YS7 YS6 YS5 YS4 YS3 YS2 YS1 YS0 1 0 YE15 YE14 YE13 YE12 YE11 YE10 YE9 YE8 1 0 YE7 YE6 YE5 YE4 YE3 YE2 YE1 YE0 YS: Starting row address YE: Ending row address Write Display Data This instruction is used to transfer data from MCU to DDRAM without changing status of ST7586S. The column address and row address will be reset to starting column address (XS) and starting row address (YS) when this instruction is accepted. The pre-instruction is defined to enter write DDRAM mode. The following continuously data means content of DDRAM without pre-instruction. Write Display Data would be stopped when any other instruction is accepted. 0 0 0 0 1 0 1 1 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write display data to DDRAM Read Display Data The instruction is used to transfer data from DDRAM to MCU without changing status of ST7586S. The column address and row address will be reset to staring column address (XS) and starting row address (YS) when this instruction is accepted. The pre-instruction is defined to enter read DDRAM mode. The following continuously data means content of DDRAM without pre-instruction. Read Display Data would be stopped when any other instruction is accepted. Read Display Data is only available via the parallel interface. 0 0 0 0 1 0 1 1 1 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Read display data from DDRAM Ver-1.1a 33/63 2009/11/30

Partial Display Area This instruction defines the display area of partial mode. There are four parameters associated with this instruction, the Partial Display Address Start PTS[15..0] and the Partial Display Address End as illustrated in Fig. 8. The instruction of Partial Display must be executed before setting the instruction of Partial Display Area 0 0 0 0 1 1 0 0 0 0 1 0 PTS15 PTS14 PTS13 PTS12 PTS11 PTS10 PTS9 PTS8 1 0 PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0 1 0 PTE15 PTE14 PTE13 PTE12 PTE11 PTE10 PTE9 PTE8 1 0 PTE7 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 Partial display address start: 00h PTS 9Fh Partial display address end: 00h PTE 9Fh Display Area: 64 Duty 160 Scroll Area This instruction defines the scrolling area of display. The first parameter TA[7..0] describes the fixed Top Area. The second parameter SA[7..0] describes the Scrolling Area. The third parameter BA[7..0]describes the Bottom Area. This instruction setting must correspond to TA+SA+BA=160. 0 0 0 0 1 1 0 0 1 1 1 0 TA7 TA6 TA5 TA4 TA3 TA2 TA1 TA0 1 0 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 1 0 BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0 Top Area: TA=00h~A0h Scrolling Area: SA=00h~A0h Bottom Area: BA=00h~A0h TA+SA+BA=160 Display Control This instruction defines the write/read scanning direction of DDRAM. 0 0 0 0 1 1 0 1 1 0 1 0 MY MX 0 0 0 0 0 0 MY=0: COM0 COM159 MY=1: COM159 COM0 MX=0: SEG0 SEG383 MX=1: SEG383 SEG0 Start Line This instruction sets row address of DDRAM to determine the initial display line. The display data of specified row address is displayed at the First Output COM. 0 0 0 0 1 1 0 1 1 1 1 0 S7 S6 S5 S4 S3 S2 S1 S0 S=00h~9Fh S7 S6 S5 S4 S3 S2 S1 S0 Line Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 2 : : : : : : : : : 1 0 0 1 1 1 0 1 127 1 0 0 1 1 1 1 0 158 1 0 0 1 1 1 1 1 159 Ver-1.1a 34/63 2009/11/30

Display Mode This instruction defines the display mode is 4-level gray scale mode or monochrome mode. 0 0 0 0 1 1 1 0 0 M M=0: Gray mode M=1: Monochrome mode Enable DDRAM Interface This instruction is used to initial DDRAM interface for write data to DDRAM or read data from DDRAM. 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 Enable DDRAM interface Display Duty This instruction defines display duty. The parameter setting of Display Duty is the number of physical display duty decreasing by one (-1). For example, the parameter must set 9Fh when the LCD display duty is 160. 0 0 1 0 1 1 0 0 0 0 1 0 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 DT=03h~9Fh First Output COM This instruction defines the first output COM number that mapping to the Start Line of DDRAM. For example, the parameter of First Output COM setting is 08h and the parameter of Start Line setting is 02h means that the COM8 would output the DDRAM data at row address 2. 0 0 1 0 1 1 0 0 0 1 1 0 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 FC=00h~9Fh FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 COM Number 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 2 : : : : : : : : : 1 0 0 1 1 1 0 1 127 1 0 0 1 1 1 1 0 158 1 0 0 1 1 1 1 1 159 Ver-1.1a 35/63 2009/11/30

FOSC Divider This instruction is used to specify the FOSC dividing 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 FOD1 FOD0 Set FOSC dividing ratio FOD1 FOD0 FOSC Dividing Ratio 0 0 Not Divide 0 1 2 Divisions 1 0 4 Divisions 1 1 8 Divisions Partial Display This instruction is used to set the partial display. The instruction of Partial Display must be executed before setting the instruction of Partial Display Area. 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 Set partial display mode N-Line Inversion This instruction is used to set the frame inverted number with range of 2 to 31. 0 0 1 0 1 1 0 1 0 1 1 0 M 0 0 NL4 NL3 NL2 NL1 NL0 Set N-Line inversion M N-Line Inversion Mode 0 Inversion occurs in every frame 1 Inversion is independent from frame NL4 NL3 NL2 NL1 NL0 Line Inversion 0 0 0 0 0 Frame inversion 0 0 0 1 0 3 line inversion 0 0 0 1 1 4 line inversion : : : : : : 1 1 1 0 1 30 line inversion 1 1 1 1 0 31 line inversion 1 1 1 1 1 32 line inversion Ver-1.1a 36/63 2009/11/30

Read Modify Write This instruction is used to enter/exit read modify write mode. When entering read modify write, the display data read will not increase column address. Only the display data write operation will increase the column address. This mode is maintained until Disable Read Modify Write (B9h) is accepted. 0 0 1 0 1 1 1 0 0 RMW RMW=0: Enable read modify write RMW=1: Disable read modify write Set Row/Column Address Enable Read Modify Write Read-Modify-Write Cycle Dummy Read Data Read Modify Data No Data Write (at same Column Addr.) Column Address increase Finished? Yes Done Ver-1.1a 37/63 2009/11/30

Set Vop This instruction is used to adjust the optimum LCD supply voltage Vop. The calculation of Vop is as shown blow: V0=3.6+(Vop[8:0]+VOF[6:0]+VopIncStep-VopDecStep)x0.04 0 0 1 1 0 0 0 0 0 0 1 0 Vop7 Vop6 Vop5 Vop4 Vop3 Vop2 Vop1 Vop0 Set Vop 1 0 - - - - - - - Vop8 The suggestion of usable V0 voltage is shown below (assume VOF[6:0]=0, VopIncStep/VopDecStep=0): Vop8 Vop7 Vop6 Vop5 Vop4 Vop3 Vop2 Vop1 Vop0 V0 (V) 0 0 1 1 0 0 0 0 0 7.44 0 0 1 1 0 0 0 0 1 7.48 0 0 1 1 0 0 0 1 0 7.52 : : : : : : : : : : 1 0 1 1 0 0 1 1 0 17.92 1 0 1 1 0 0 1 1 1 17.96 1 0 1 1 0 1 0 0 0 18.00 Vop Increase This instruction is used to increase Vop step by one 0 0 1 1 0 0 0 0 0 1 Vop increase one step Vop Decrease This instruction is used to decrease Vop step by one 0 0 1 1 0 0 0 0 1 0 Vop decrease one step Ver-1.1a 38/63 2009/11/30

BIAS System This instruction is used to select LCD bias ratio of the voltage to meet the requirement of driving the LCD. 0 0 1 1 0 0 0 0 1 1 1 0 - - - - - BS2 BS1 BS0 Set BIAS system BS2 BS1 BS0 BIAS Ratio 0 0 0 1/14 0 0 1 1/13 0 1 0 1/12 0 1 1 1/11 1 0 0 1/10 1 0 1 1/9 Booster Level This instruction is used to control the built-in booster circuit to provide the power source of the built-in regulator. 0 0 1 1 0 0 0 1 0 0 1 0 - - - - - BST2 BST1 BST0 Set booster level BST2 BST1 BST0 Booster Level 0 0 0 x1 Booster 0 0 1 x2 Booster 0 1 0 x3 Booster 0 1 1 x4 Booster 1 0 0 x5 Booster 1 0 1 x6 Booster 1 1 0 x7 Booster 1 1 1 x8 Booster Ver-1.1a 39/63 2009/11/30

Vop Offset This instruction is used to adjust Vop offset for V0. 0 0 1 1 0 0 0 1 1 1 1 0 0 VOF6 VOF5 VOF4 VOF3 VOF2 VOF1 VOF0 Set Vop offset VOF6 VOF5 VOF4 VOF3 VOF2 VOF1 VOF0 Dec. V0 Offset (mv) 1 1 1 1 1 1 63 +2520 1 1 1 1 1 0 62 +2480 0 : : : : : : : : 0 0 0 0 0 1 1 +40 0 0 0 0 0 0 0 0 1 1 1 1 1 1-1 -40 1 1 1 1 1 0-2 -80 1 : : : : : : : : 0 0 0 0 0 1-63 -2520 0 0 0 0 0 0-64 -2560 Analog Control This instruction is used to set status of analog circuit. 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 Enable analog circuit Auto Read Control This instruction is used to set status of OTP auto read to enable or disable. 0 0 1 1 0 1 0 1 1 1 1 0 1 0 0 XARD 1 1 1 1 XARD=0: Enable auto read XARD=1: Disable auto read OTP WR/RD Control This instruction is used to set status of OTP that write to OTP or read from OTP. 0 0 1 1 1 0 0 0 0 0 1 0 0 0 WR /RD 0 0 0 0 0 WR/RD=0: Enable OTP read WR/RD=1: Enable OTP write OTP Control Out This instruction is used to cancel the OTP control. 0 0 1 1 1 0 0 0 0 1 OTP control out Ver-1.1a 40/63 2009/11/30

OTP Write This instruction is used to trigger OTP programming procedure. 0 0 1 1 1 0 0 0 1 0 OTP programming procedure OTP Read This instruction is used to trigger OTP up-load procedure. 0 0 1 1 1 0 0 0 1 1 OTP up-load procedure OTP Selection Control This instruction is used to define OTP selection control. 0 0 1 1 1 0 0 1 0 0 1 0 0 Ctrl 0 1 1 0 0 1 Ctrl=0: Disable OTP Ctrl=1: Enable OTP OTP Programming Setting This instruction is used to set OTP write timing. 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 OTP programming setting Ver-1.1a 41/63 2009/11/30

Frame Rate (Gray Scale Mode) When enter 4-level gray scale mode, this instruction is used to define frequency of frame rate in different temperature range as shown in Fig. 13 0 0 1 1 1 1 0 0 0 0 1 0 - - - FRA4 FRA3 FRA2 FRA1 FRA0 1 0 - - - FRB4 FRB3 FRB2 FRB1 FRB0 1 0 - - - FRC4 FRC3 FRC2 FRC1 FRC0 1 0 - - - FRD4 FRD3 FRD2 FRD1 FRD0 FRA: FR in temp. -30 C to TA FRB: FR in temp TA to TB FRC: FR in temp. TB to TC FRD: FR in temp TC to 90 C FRx4 FRx3 FRx2 FRx1 FRx0 Frame Rate (Hz) FRx4 FRx3 FRx2 FRx1 FRx0 Frame Rate (Hz) 0 0 0 0 0 38.5 1 0 0 0 0 77.0 0 0 0 0 1 38.5 1 0 0 0 1 77.0 0 0 0 1 0 38.5 1 0 0 1 0 77.0 0 0 0 1 1 40.0 1 0 0 1 1 80.0 0 0 1 0 0 41.5 1 0 1 0 0 83.0 0 0 1 0 1 46.0 1 0 1 0 1 92.0 0 0 1 1 0 46.0 1 0 1 1 0 92.0 0 0 1 1 1 49.0 1 0 1 1 1 98.0 0 1 0 0 0 51.0 1 1 0 0 0 102.0 0 1 0 0 1 53.0 1 1 0 0 1 106.0 0 1 0 1 0 55.0 1 1 0 1 0 110.0 0 1 0 1 1 55.0 1 1 0 1 1 110.0 0 1 1 0 0 69.0 1 1 1 0 0 138.0 0 1 1 0 1 73.0 1 1 1 0 1 146.0 0 1 1 1 0 76.5 1 1 1 1 0 153.0 0 1 1 1 1 76.5 1 1 1 1 1 153.0 Ver-1.1a 42/63 2009/11/30

Frame Rate (Monochrome Mode) When enter monochrome mode, this instruction is used to define frequency of frame rate in different temperature range as shown in Fig. 13 0 0 1 1 1 1 0 0 0 1 1 0 - - - FRA4 FRA3 FRA2 FRA1 FRA0 1 0 - - - FRB4 FRB3 FRB2 FRB1 FRB0 1 0 - - - FRC4 FRC3 FRC2 FRC1 FRC0 1 0 - - - FRD4 FRD3 FRD2 FRD1 FRD0 FRA: FR in temp. -30 C to TA FRB: FR in temp TA to TB FRC: FR in temp. TB to TC FRD: FR in temp TC to 90 C FRx4 FRx3 FRx2 FRx1 FRx0 Frame Rate (Hz) FRx4 FRx3 FRx2 FRx1 FRx0 Frame Rate (Hz) 0 0 0 0 0 38.5 1 0 0 0 0 77.0 0 0 0 0 1 38.5 1 0 0 0 1 77.0 0 0 0 1 0 38.5 1 0 0 1 0 77.0 0 0 0 1 1 40.0 1 0 0 1 1 80.0 0 0 1 0 0 41.5 1 0 1 0 0 83.0 0 0 1 0 1 46.0 1 0 1 0 1 92.0 0 0 1 1 0 46.0 1 0 1 1 0 92.0 0 0 1 1 1 49.0 1 0 1 1 1 98.0 0 1 0 0 0 51.0 1 1 0 0 0 102.0 0 1 0 0 1 53.0 1 1 0 0 1 106.0 0 1 0 1 0 55.0 1 1 0 1 0 110.0 0 1 0 1 1 55.0 1 1 0 1 1 110.0 0 1 1 0 0 69.0 1 1 1 0 0 138.0 0 1 1 0 1 73.0 1 1 1 0 1 146.0 0 1 1 1 0 76.5 1 1 1 1 0 153.0 0 1 1 1 1 76.5 1 1 1 1 1 153.0 Temperature Range This instruction is used to define the temperature range for automatic frame rate adjustment according to current temperature as shown in Fig. 13. 0 0 1 1 1 1 0 0 1 0 1 0 - TA6 TA5 TA4 TA3 TA2 TA1 TA0 1 0 - TB6 TB5 TB4 TB3 TB2 TB1 TB0 1 0 - TC6 TC5 TC4 TC3 TC2 TC1 TC0 TA[6 :0]=TA Temp.( C)+40 TB[6:0]=TB Temp.( C)+40 TC[6 :0]=TC Temp.( C)+40 Temp. Range Value Temp. Rising State ( C) Temp. Falling State ( C) Freq. changing point A (TA[6:0]-40)+5 TA[6:0]-40 Freq. changing point B (TB[6:0]-40)+5 TB[6:0]-40 Freq. changing point C (TC[6:0]-40)+5 TC[6:0]-40 Ver-1.1a 43/63 2009/11/30

Temperature Gradient Compensation This instruction is used to define the temperature gradient compensation coefficient. The temperature gradient compensation coefficient setting is shown as below table. 0 0 1 1 1 1 0 1 0 0 1 0 MT13 MT12 MT11 MT10 MT03 MT02 MT01 MT00 1 0 MT33 MT32 MT31 MT30 MT23 MT22 MT21 MT20 1 0 MT53 MT52 MT51 MT50 MT43 MT42 MT41 MT40 1 0 MT73 MT72 MT71 MT70 MT63 MT62 MT61 MT60 1 0 MT93 MT92 MT91 MT90 MT83 MT82 MT81 MT80 1 0 MTB3 MTB2 MTB1 MTB0 MTA3 MTA2 MTA1 MTA0 1 0 MTD3 MTD2 MTD1 MTD0 MTC3 MTC2 MTC1 MTC0 1 0 MTF3 MTF2 MTF1 MTF0 MTE3 MTE2 MTE1 MTE0 Set temperature gradient compensation coefficient MTx3 MTx2 MTx1 MTx0 Mx (mv/ C) 0 0 0 0 0 0 0 0 1-5 0 0 1 0-10 : : : : : 1 1 0 1-65 1 1 1 0-70 1 1 1 1-75 Ver-1.1a 44/63 2009/11/30

OPERATION FLOW Power ON Referential Operation Flow Power ON Flow <Start> (Sleep In Mode) Wait Power Stable, t>1ms (Depends on system power) Keep RESB=L *1 Wait reset start, t>10us Set RESB=H *1 Wait reset finished, t>120ms Operation Sequence Case-1: RSTB=L while Power ON Default State *2 Function Set (by user) (1) Auto Read Control (2) OTP WR/RD Control (3) OTP Read (4) OTP Control Out Function Set (by user) (1) Power Mode (SLPOUT) (2) Display OFF (3) Set Vop (4) BIAS System (5) Booster Level (6) Analog Control (7) N-Line Inversion (8) Display Mode (9) Enable DDRAM Interface (10) Display Control (11) Inversion Display Case-2: RSTB=H while Power ON Clear DDRAM by 0 (384 x 160 x 2) Function Set (by user) (1) Set Column Address (2) Set Row Address (3) Display ON Power ON Flow <End> (Sleep Out Mode) Note 1. Please refer to the specification of trw and tr. 2. Refer to the section of RESET CIRCUIT. 3. The detail instruction functionality is described in section of INSTRUCTION DESCRIPTION. 4. The power stable is defined as the time that the later power (VDDI or VDDA) reaches 90% od its rated voltage. Ver-1.1a 45/63 2009/11/30

Item Symbol Requirement Description VDD2 power ON delay t ON-V2 No Limitation VDDI and VDDA can be applied in any order. IC will NOT be damaged when one of VDD1 and VDD2 is ON but another is OFF. Power stable is defined as the time that the later power (VDDI or VDDA) reaches 90% of its rated voltage. Recommend Setting: -50ms t ON-V2 No Limitation. Case-1 RESB=L can be input at any time after power is stable. RESB input time t ON-RES t RW t ON-RES t RW & t R should match the timing specification of RESB. Case-2 RESB has priority over CSB. No Limitation Recommend Setting: 0 t ON-RES 50 ms. CSB input time t ON-CS No Limitation CSB can be input at any time after power is stable. Note: 1. If the contents of internal registers are the same as default, the related commands can be ignored. 2. If RESB is held high or unstable during power ON, a successful hardware reset by RSTB is required after VDDI and VDDA are both stable (as illustrated in Case-2). Otherwise, correct functionality can NOT be guaranteed. Ver-1.1a 46/63 2009/11/30

Power OFF Referential Operation Flow Power OFF Flow <Start> (Sleep Out Mode) Case-1: Use RSTB Operation Sequence Function Set (by user) (1) Display OFF (2) Power Mode (SLPIN) Wait 120ms Keep RESB=L Wait 200ms Power OFF Power OFF Flow <End> (Sleep In Mode) Case-2: Power OFF at Sleep State Item Symbol Requirement Description Power OFF Time Case-1 t OFF-RESB 200ms t OFF-RESB Power can be turned OFF after built-in power becomes Case-2 t OFF-PW 0 t OFF-PW VSS. VDD2 power ON delay t OFF-V2 No Limitation VDD1 and VDD2 can be powered down in any order. IC will NOT be damaged when one of VDD1 and VDD2 is ON but another is OFF. Recommend Setting: -50ms t OFF-V2 No Limitation. Note: In Case-2, RSTB can fall to VSS at the same time as VDDI. Ver-1.1a 47/63 2009/11/30

OTP Operation Referential OTP Burning Flow Power ON Wait Power Stable HW Reset Delay 120ms Initial LCD Module Set Register Key Show Image and Fine Tune Vop C1h C2h Adjust Vop Offset EXTB connect to VSS VPP connect to 6.5V Wait VPP Stable OTP Writing Remove 6.5V from VPP Remove VSS from EXTB Restart LCD Module Check Display Performance Note: In this section + and - key button, please execute command C1h to increase one step at Vop and execute command C2h to decrease one step at Vop. Ver-1.1a 48/63 2009/11/30

Referential OTP Operation Code void Initialization_ST7586S(void) { Reset_ms(10); Delay_ms(120); Write(Command, 0xD7); // Disable Auto Read Write(Data, 0x9F); Write(Command, 0xE0); // Enable OTP Read Write(Data, 0x00); Delay_ms(10); Write(Command, 0xE3); // OTP Up-Load Delay_ms(20); Write(Command, 0xE1); // OTP Control Out Write(Command, 0x11); // Sleep Out Write(Command, 0x28); // Display OFF Delay_ms(50); Write(Command, 0xC0); // Vop = B9h Write(Data, 0xB9); Write(Data, 0x00); Write(Command, 0xC3); // BIAS = 1/9 Write(Data, 0x05); Write(Command, 0xC4); // Booster = x8 Write(Data, 0x07); Write(Command, 0xD0); // Enable Analog Circuit Write(Data, 0x1D); Write(Command, 0xB5); // N-Line = 0 Write(Data, 0x00); Write(Command, 0x39); // Monochrome Mode Write(Command, 0x3A); // Enable DDRAM Interface Write(Data, 0x02); Write(Command, 0x36); // Scan Direction Setting Write(Data, 0x00); Write(Command, 0xB0); // Duty Setting Write(Data, 0x9F); Write(Command, 0xB4); // Partial Display Write(Data, 0xA0); Write(Command, 0x30); // Partial Display Area = COM0 ~ COM119 Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x77); Write(Command, 0x20); // Display Inversion OFF Write(Command, 0x2A); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x7F); // Column Address Setting // SEG0 -> SEG384 Ver-1.1a 49/63 2009/11/30

Write(Command, 0x2B); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x9F); // Row Address Setting // COM0 -> COM160 Clear_DDRAM(); // Clear whole DDRAM by 0 (384 x 160 x 2) Write(Command, 0x2A); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x4F); Write(Command, 0x2B); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x00); Write(Data, 0x78); // Column Address Setting // SEG0 -> SEG239 // Row Address Setting // COM0 -> COM120 Disp_Image(); // Fill the DDRAM Data by Panel Resolution } Write(Command, 0x29); // Display ON Ver-1.1a 50/63 2009/11/30

void Set_OTP_Register(void) { Write(Command, 0xB5); Write(Data, 0x8C); } // N-Line = 13 Line Inversion (Non-Reset) void Vop_Fine_Tune(v { Disp_Image(); // Display the image Write(Command, 0x29); // Display ON } Write(Command, 0xC1); or Write(Command, 0xC2); // Fine tuning Vop to adjust display quality void OTP_Write(void) { Write(Command, 0x28); Delay_ms(50); // Display OFF // Delay 50ms Write(Command, 0xF1); Write(Data, 0x12); Write(Data, 0x12); Write(Data, 0x12); Write(Data, 0x12); // Frame Rate = 77Hz } Write(Command, 0xE4); Write(Data, 0x59); Write(Command, 0xE5); Write(Data, 0x0F); Write(Command, 0xE0); Write(Data, 0x20); Delay_ms(100); Write(Command, 0xE2); Delay_ms(100); Write(Command, 0xE1); // OTP Selection Control // OTP Programming Setting // OTP WR/RD Control // Delay 100ms // OTP Write // Delay 100ms // OTP Control Out Ver-1.1a 51/63 2009/11/30

HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. ABSOLUTE MAXIMUM RATINGS VSS=0V Parameter Symbol Conditions Unit Digital Power Supply Voltage VDDI (VDD1) 0.3 ~ 3.6 V Analog Power supply voltage VDDA (VDD2~VDD5) 0.3 ~ 3.6 V LCD Power supply voltage V0-XV0 0.3 ~ 19 V LCD Power supply voltage VG 0.3 ~ 5.5 V LCD Power supply voltage VM 0.3 ~ VDDA+0.3 V MPU Interface Input Voltage Vin 0.3 ~ VDDI+0.3 V Operating temperature TOPR 30 to +80 C Storage temperature TSTR 40 to +125 C Note: 1. All voltages are respect to VSS unless otherwise noted (VSS=VSS1=VSS2=VSS4=VSSX). 2. Stresses exceed the ranges listed above may cause permanent damage to IC. 3. Parameters are valid over operating temperature range unless otherwise specified. 4. Insure the voltage levels of V0, VG, VM, VSS and XV0 always match the correct relation: V0 VG > VM > VSS XV0 Ver-1.1a 52/63 2009/11/30

DC CHARACTERISTICS VSS=VSS1=VSS2=VSS4=VSSX=0V and Ta = 30 ~ 85 C, unless otherwise specified. Item Symbol Condition Related Pin Rating Min. Typ. Max. Unit Digital Operating Voltage VDDI VDD1 1.7 3.4 V Analog Operating Voltage VDDA VDD2~5 2.7 3.4 V Input High-level Voltage Input Low-level Voltage V IH V IL Output High-level Voltage V OH I OH=1.0mA, VDD1=3.0V Output Low-level Voltage V OL I OL= 1.0mA, VDD1=3.0V Input Leakage Current I IL Vin = VDD1 or VSS Vop=16V, ON Resistance of LCD Drivers Frame Frequency R ON f FR MPU Interface 0.7*VDD1 VDD1 V MPU Interface VSS1 0.3*VDD1 V D[7:0] TE 0.8*VDD1 VDD1 V D[7:0] TE VSS1 0.2*VDD1 V MPU Interface 1.0 1.0 µa COM V=10% Drivers Ta=25 C VG=3.2V, SEG V=10% Drivers VDDI=VDDA=3.3V, 1.0 KΩ 1.0 KΩ N-Line OFF, FR=0x12, 77 Hz Duty=1/160, Ta = 25 C Vop Voltage Output Vop VDDI=VDDA=3.3V V0-XV0 *1,2 18 V VG Voltage Output VG VDDI=VDDA=3.3V VG *1,2 1.8 5 V VM Voltage Output VM VDDI=VDDA=3.3V VM *2 0.9 VDDA-0.7 V Note: 1. V0, XV0 and VG include: V0I, V0O, V0S, XV0I, XV0O, XV0S, VGI, VGO & VGS. 2. V0, XV0, VG and VM do NOT support external power supply. The current consumed by whole IC (bare die) with internal power system: Rating Item Symbol Condition Unit Min. Typ. Max. VDDI=VDDA=3.3V, Display ON ISS 8x Booster, Vop = 16V, Bias=1/10 800 1000 µa Pattern: SNOW (Static) N-Line OFF, f FR=77Hz, Ta=25 C Sleep In ISS VDDI=VDDA=3.3V, Ta=25 C 20 25 µa Note: The current is DC characteristic of a Bare Chip. Ver-1.1a 53/63 2009/11/30

TIMING CHARATERISTIC System Bus Timing for 8080 MCU Interface VDD1 = 1.8V, Ta = 25 C Item Signal Symbol Condition Min. Max. Unit Address setup time taw8 0 A0 Address hold time tah8 0 System cycle time (WRITE) tcyc8 240 /WR L pulse width (WRITE) /WR tcclw 100 /WR H pulse width (WRITE) tcchw 100 System cycle time (READ) tcyc8 500 /RD L pulse width (READ) RD tcclr 220 ns /RD H pulse width (READ) tcchr 220 WRITE Data setup time tds8 20 WRITE Data hold time tdh8 20 D[7:0] READ access time tacc8 CL = 30 pf 100 READ Output disable time toh8 CL = 30 pf 10 110 Note: 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) (tcyc8 tcclw tcchw) for (tr + tf) (tcyc8 tcclr tcchr) are specified. 2. All timing is specified using 20% and 80% of VDD1 as the reference. 3. tcclw and tcclr are specified as the overlap between CSB being L and WR and RD being at the L level. Ver-1.1a 54/63 2009/11/30

System Bus Timing for 6800 MCU Interface VDD1 = 1.8V, Ta = 25 C Item Signal Symbol Condition Min. Max. Unit Address setup time taw6 0 A0 Address hold time tah6 0 System cycle time (WRITE) tcyc6 240 Enable L pulse width (WRITE) tewlw 100 Enable H pulse width (WRITE) tewhw 100 E System cycle time (READ) tcyc6 500 ns Enable L pulse width (READ) tewlr 220 Enable H pulse width (READ) tewhr 220 Write data setup time tds6 20 Write data hold time tdh6 20 D[7:0] Read data access time tacc6 CL = 16 pf 100 Read data output disable time toh6 CL = 16 pf 10 110 Note: 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tf) (tcyc6 tewlw tewhw) for (tr + tf) (tcyc6 tewlr tewhr) are specified. 2. All timing is specified using 20% and 80% of VDD1 as the reference. 3. tewlw and tewlr are specified as the overlap between CSB being L and E. Ver-1.1a 55/63 2009/11/30

System Bus Timing for 4-Line SPI MCU Interface First bit Last bit VDD1 = 1.8V, Ta = 25 C Item Signal Symbol Condition Min. Max. Unit Serial clock period tscyc 200 SCLK H pulse width SCLK tshw 140 SCLK L pulse width tslw 60 Address setup time tsas 20 A0 Address hold time tsah 20 ns Data setup time tsds 20 SDA Data hold time tsdh 20 CSB-SCLK time tcss 30 CSB CSB-SCLK time tcsh 30 Note: 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less. 2. All timing is specified using 20% and 80% of VDD1 as the standard. Ver-1.1a 56/63 2009/11/30

System Bus Timing for 3-Line SPI MCU Interface VDD1 = 1.8V, Ta = 25 C Item Signal Symbol Condition Rating Min. Max. Unit Serial Clock Period tscyc 200 SCL H pulse width SCLK tshw 140 SCL L pulse width tslw 60 Data setup time tsds 20 SDA Data hold time tsdh 20 ns CS-SCL time tcss 30 CSB tcsh 30 CS H pulse width tchw 0 Note: 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less. 2. All timing is specified using 30% and 70% of VDD1 as the standard. Ver-1.1a 57/63 2009/11/30

Reset Timing t RW RSTB t R Internal Status During Reset... Reset Finished VDD1 = 1.8V, Ta = 25 C Item Symbol Condition Min. Max. Unit Reset time tr 120 ms Reset L pulse width trw 10 us Ver-1.1a 58/63 2009/11/30

APPLICATION NOTE ITO Layout Guide The ITO layout suggestion is shown as below: For V0, XV0, VG, VDD and VSS Driver Side XV0I XV0I XV0S XV0O V0O V0S V0I V0I FPC PIN FPC PIN Separate by ITO Short by FPC Fig. 14 V0 ITO Layout Fig. 15 XV0 ITO Layout Driver Side VSS4 VSS2 VSSX VSS1 VGI VGI VGS VGO FPC PIN FPC PIN Separate by ITO Short by FPC Fig. 16 VG ITO Layout Fig. 17 VSS ITO Layout VDD2 VDD5 VDD4 VDD3 VDDX Fig. 18 VDD ITO Layout Ver-1.1a 59/63 2009/11/30

For VPP This is the power source for programming the internal OTP. If the ITO resistance is too high, the operation current will cause the voltage drop while programming OTP. Please try to keep the ITO resistance as low as possible. Enhance ESD performance for COG application 1. Increase RSTB resistance: Fig. 19 RSTB ITO Layout 2. Add ESD protection ring: FPC Fig. 20 Air ESD Protection Ring Ver-1.1a 60/63 2009/11/30