Non-ideal hydrodynamics in protoplanetary discs

Similar documents
PLANET FORMATION BY GRAVITATIONAL INSTABILITY? Kaitlin Kratter University of Arizona. Sagan Summer Workshop, July 2015

Introduction. Convergence of the fragmentation boundary in self-gravitating discs

Discs or Disks? A review of circumstellar discs. Ken Rice Institute for Astronomy University of Edinburgh. 6/18/12 Labyrinth of Star Formation

Evolution of protoplanetary discs

Lecture 6: Protostellar Accretion

Forming Gas-Giants Through Gravitational Instability: 3D Radiation Hydrodynamics Simulations and the Hill Criterion

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Gravitational fragmentation of discs can form stars with masses

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Stability of Vertically and Radially Stratified Protoplanetary Disks

Ruth Murray-Clay University of California, Santa Barbara

Planet formation in the ALMA era. Giuseppe Lodato

Generating Vortices with Slowly-growing Gas Giant Planets

Origins of Gas Giant Planets

Lecture 20: Planet formation II. Clues from Exoplanets

The large-scale magnetic field in protoplanetary disks

Planet formation and (orbital) Evolution

Disc-Planet Interactions during Planet Formation

PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS

On the accumulation of solid bodies in global turbulent protoplanetary disc models

The Migration of Giant Planets in Massive Protoplanetary Discs

PLANETARY MIGRATION. Review presented at the Protostars & Planets VI conference in Heidelberg, september 2013 (updated).

arxiv: v1 [astro-ph.ep] 13 Jan 2019

N-body Dynamics in Stellar Clusters Embedded in Gas

Planet Formation. lecture by Roy van Boekel (MPIA) suggested reading: LECTURE NOTES ON THE FORMATION AND EARLY EVOLUTION OF PLANETARY SYSTEMS

Interfacial Dynamics in Protoplanetary Accretion Disks BERN 2017

Vortices in accretion discs: formation process and dynamical evolution

How migrating geese and falling pens inspire planet formation

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

arxiv: v1 [astro-ph.sr] 7 Aug 2009

Star formation. Protostellar accretion disks

The Jeans mass as a fundamental measure of self-gravitating disc fragmentation and initial fragment mass

Astro2020 Science White Paper Dust growth and dust trapping in protoplanetary disks with the ngvla

Brown dwarf formation by gravitational fragmentation of massive, extended protostellar discs

Planetesimal Formation and Planet Coagulation

Hydrodynamic Outcomes. Transitional Discs. of Planet Scattering in. Nick Moeckel IoA. Phil Armitage Colorado

Global gravitational instabilities in discs with infall

A Beta-Viscosity Model

Protoplanetary Disks. Ernst Dorfi WS 2012

Planet Formation. XIII Ciclo de Cursos Especiais

Core Accretion at Wide Separations: The Critical Role of Gas

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

From pebbles to planets

Forming habitable planets on the computer

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

arxiv: v1 [astro-ph.ep] 30 Sep 2014

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Planet disk interaction

From pebbles to planetesimals and beyond

arxiv: v1 [astro-ph.ga] 12 Dec 2011

The role of magnetic fields for planetary formation

Lecture 14: Viscous Accretion Disks. HST: μm image of the A0e star AB Aurigae

Protoplanetary Disks: Gas Dynamics

HD Transition Disk Herbig Ae/Be stars 2014

Anders Johansen (Max-Planck-Institut für Astronomie) From Stars to Planets Gainesville, April 2007

How do we model each process of planet formation? How do results depend on the model parameters?

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

arxiv:astro-ph/ v1 11 Aug 2004

arxiv: v2 [astro-ph] 10 Jan 2008

Vortices in planetary migration

The Magnetorotational Instability

Protoplanetary disks Part I

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

Theory of star formation

Growth and Transport Processes in Protoplanetary Disks

arxiv:astro-ph/ v1 30 Oct 2006

The Dispersal of Protoplanetary Disks

viscous stress tensor: T r!

BROWN DWARF FORMATION BY DISC FRAGMENTATION

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

arxiv: v1 [astro-ph.ep] 8 Jan 2016

The Streaming Instability in the Dead Zone of a Protoplanetary Disk

Migration. Phil Armitage (University of Colorado) 4Migration regimes 4Time scale for massive planet formation 4Observational signatures

Type III migration in a low viscosity disc

Brown Dwarf Formation from Disk Fragmentation and Ejection

arxiv: v1 [astro-ph.sr] 29 Nov 2011

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Dead zones in protoplanetary discs

Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation

Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation

Definitions. Stars: M>0.07M s Burn H. Brown dwarfs: M<0.07M s No Burning. Planets No Burning. Dwarf planets. cosmic composition (H+He)

Astronomy 405 Solar System and ISM

arxiv: v2 [astro-ph.ep] 16 Jun 2017

Practical Numerical Training UKNum

Simulations of gaseous disc-embedded planet interaction

Implications of protostellar disk fragmentation

Directly observing continuum emission from self-gravitating spiral waves

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Particles in the Solar Nebula: Dust Evolution and Planetesimal Formation. S. J. Weidenschilling Planetary Science Institute

Formation Process of the Circumstellar Disk: Long-term Simulations in the Main Accretion Phase of Star Formation

Star and Planet Formation: New Insights from Spatially Resolved Observations

Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices

arxiv: v1 [astro-ph] 14 Feb 2008

Possible commensurabilities among pairs of extrasolar planets

Numerical simulations of disc-planet interactions

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

arxiv:astro-ph/ v1 8 Mar 2006

arxiv: v1 [astro-ph.ep] 30 Aug 2018

Transcription:

Non-ideal hydrodynamics in protoplanetary discs Min-Kai Lin Steward Theory Fellow University of Arizona March 15 2016

Example: disc asymmetries Vortices at planetary gap edges (HD142527, Casassus et al., 2015) Non-ideal in the sense that Involves a structured disc No magnetic fields M-K. Lin (Arizona) VSI/GI March 15 2016 2 / 26

Current picture of magnetic accretion (Bai, 2016) M-K. Lin (Arizona) VSI/GI March 15 2016 3 / 26

Fluid instabilities/turbulence in protoplanetary discs (Armitage, 2015) Today: Vertical shear instability : thermodynamic requirements Gravitational instability : including viscosity and cooling Post-talk: Thermodynamic-driving of eccentricity in discs M-K. Lin (Arizona) VSI/GI March 15 2016 4 / 26

Astrophysical discs have vertical shear Accretion discs are generally baroclinic P ρ 0 Ω z 0 Vertically isothermal thin-disc with T r q, r Ω ( qz ) z H 2H r Ω Kep O(H/r) effect M-K. Lin (Arizona) VSI/GI March 15 2016 5 / 26

Vertical shear instability z Ω 0 free energy instability? (Umurhan et al., 2013) Change in kinetic energy: E l 2 r ( Ω 2 + l ) z r Ω2. l r z Vertical shear is weak, BUT E < 0 if l z l r INSTABILITY M-K. Lin (Arizona) VSI/GI March 15 2016 6 / 26

Vertical shear instability z Ω 0 free energy instability? (Nelson et al., 2013) Change in kinetic energy: E l 2 r ( Ω 2 + l ) z r Ω2. l r z Vertical shear is weak, BUT E < 0 if l z l r INSTABILITY M-K. Lin (Arizona) VSI/GI March 15 2016 6 / 26

VSI: non-linear outcome (Nelson et al., 2013) Hydrodynamic turbulence M-K. Lin (Arizona) VSI/GI March 15 2016 7 / 26

VSI needs to fight buoyancy in real discs r z Ω }{{} destabilizing vert. shear v.s. N z }{{} stabilizing vert. buoyancy Vertical shear is weak, r z lnω O(h) 1 (so need l z /l r 1) Vertical buoyancy is strong, N z /Ω O(1) M-K. Lin (Arizona) VSI/GI March 15 2016 8 / 26

Thermodynamic condition for the VSI Can overcome buoyancy forces by cooling the disc rapidly Parameterization: t T = (T T 0 )/t cool (Nelson et al., 2013) Can we quantify this requirement? M-K. Lin (Arizona) VSI/GI March 15 2016 9 / 26

Lin & Youdin (2015): linear theory with finite cooling From single ODE, reduced model for T r q disc, find that VSI requires: t cool Ω K < h q γ 1 h q : vertical shear (h H/r) destabilizing γ 1: vertical buoyancy stabilizing t cool Ω K 1 required, i.e. rapid cooling M-K. Lin (Arizona) VSI/GI March 15 2016 10 / 26

Full linear theory Solve linearized fluid equations in the radially local approximation β = t cool Ω K β crit h q γ 1 M-K. Lin (Arizona) VSI/GI March 15 2016 11 / 26

Vertical shear instability in the Solar Nebula Cooling via dust-opacity ( T 2 ) in the Minimum Mass Solar Nebula (Chiang & Youdin, 2010): t cool Ω K = M-K. Lin (Arizona) VSI/GI March 15 2016 12 / 26

Typical growth times in the Solar Nebula VSI is most active in the outer disc 10 100AU Forced to develop on smaller scales towards inner disc M-K. Lin (Arizona) VSI/GI March 15 2016 13 / 26

Wide orbit planets (Marois et al., 2010) M-K. Lin (Arizona) VSI/GI March 15 2016 14 / 26

Disc instability theory Young, massive protoplanetary discs fragment under its own gravity (Rice et al., 2005) M-K. Lin (Arizona) VSI/GI March 15 2016 15 / 26

When do (simulated) protostellar discs fragment? Massive disc Fast cooling Q c sω πgσ 2 t cool Ω 3 The cooling criterion is empirical. (Paardekooper, 2012) M-K. Lin (Arizona) VSI/GI March 15 2016 16 / 26

And when it does not fragment Gravito-turbulence stable cooling, β heating, α unstable Cooling: β t cool Ω Heating: α viscosity Equilibrium α = α(β) Fragments if β < β c or α > α c M-K. Lin (Arizona) VSI/GI March 15 2016 17 / 26

When do realistic protostellar discs fragment? Work out Σ(R), T (R)..etc., 1 Is Toomre Q 1? 2 Is t cool Ω 1 or α 0.1? Possible issues: Need to choose critical values Complex physics to get Σ, T were not included in the numerical experiments that established those critical values Numerical uncertainties in critical values (e.g. resolution) M-K. Lin (Arizona) VSI/GI March 15 2016 18 / 26

An alternative approach (Rice et al., 2011) Write down a classic, viscous disc model to describe quasi-steady, gravito-turbulent state, include cooling physics Analyze its stability properties M-K. Lin (Arizona) VSI/GI March 15 2016 19 / 26

An alternative approach (Rice et al., 2011) Write down a classic, viscous disc model to describe quasi-steady, gravito-turbulent state, include cooling physics Analyze its stability properties Unstable fragmentation M-K. Lin (Arizona) VSI/GI March 15 2016 19 / 26

Quantifying cooling Classic dispersion relation without cooling }{{} s 2 = 2πGΣ k }{{} growth +gravity Ω 2 }{{} rotation γc 2 s k 2 }{{} pressure M-K. Lin (Arizona) VSI/GI March 15 2016 20 / 26

Quantifying cooling New result with cooling }{{} s 2 = 2πGΣ k }{{} growth +gravity Ω 2 }{{} rotation ( ) Tirr /T + γt cool s cs 2 k 2 1 + t cool s }{{} modified pressure E t = R ρ µ(γ 1) (T T irr ) t cool Note if T irr = 0: E t = E t cool (Gammie, 2001) M-K. Lin (Arizona) VSI/GI March 15 2016 20 / 26

Quantifying cooling New result with cooling }{{} s 2 = 2πGΣ k }{{} growth +gravity Ω 2 }{{} rotation ( ) Tirr /T + γt cool s cs 2 k 2 1 + t cool s }{{} modified pressure Dispersion relation changes from s 2 s 3 Can be formally unstable for any t cool < T irr = 0 pressureless disc Just a fancy way to compare compressional heating v.s. thermal losses M-K. Lin (Arizona) VSI/GI March 15 2016 20 / 26

A little magic Cooling timescale to remove pressure over a lengthscale H t cool, = ( γ 1) 3/2 Ω 1 α = 4 γ 1 9 γ( γ + 1) γ α t cool, Ω Sim., t cool,frag Ω Reference 7/5 0.062 12.75 12 13 Rice et al. (2005) 1.6 0.063 7.33 8 Rice et al. (2011) 5/3 0.063 6.37 6 7 Rice et al. (2005) 2 0.059 3.75 3 Gammie (2001) (Lin & Kratter, submitted) M-K. Lin (Arizona) VSI/GI March 15 2016 21 / 26

Irradiation is important M-K. Lin (Arizona) VSI/GI March 15 2016 22 / 26

Viscosity-enabled gravitational instability Classic instability condition 2πGΣ k Ω 2 γc 2 s k 2 > 0 + gravity rotation pressure > 0 M-K. Lin (Arizona) VSI/GI March 15 2016 23 / 26

Viscosity-enabled gravitational instability Add viscosity: 2πGΣ k cs 2 k 2 > 0 + gravity pressure > 0 (Lynden-Bell & Pringle, 1974; Willerding, 1992; Gammie, 1996) Viscosity or frictional forces remove rotational stabilization (cf. inwards migration of particles due to gas-dust drag) Rice et al. (2005) report a α max 0.1 before fragmentation, also supported by Clarke et al. (2007) Viscous GI growth rate: (isothermal/irradiated limit) s = 27α 16Q 4 Ω M-K. Lin (Arizona) VSI/GI March 15 2016 23 / 26

Application to protoplanetary discs Input physical disc model into stability calculation get growth timescales Beyond 60AU: Cooling criterion both disc fragments Viscosity criterion high M disc fragments, growth times one orbit M-K. Lin (Arizona) VSI/GI March 15 2016 24 / 26

Summary Vertical shear instability Feeds off free energy in z Ω 0 Require large vertical motions to tap into weak vertical shear Require ultra-fast cooling VSI possible in the outer disc between 10 100AU Generalized gravitational instability Cooling: reduces thermal support Viscosity: reduces rotational support Fragmentation: inability to maintain steady gravito-turbulence because cooling and/or turbulent stresses (viscosity) M-K. Lin (Arizona) VSI/GI March 15 2016 25 / 26

References Armitage P. J., 2015, ArXiv e-prints Bai X.-N., 2016, ArXiv e-prints Casassus S., Wright C. M., Marino S., Maddison S. T., Wootten A., Roman P., Pérez S., Pinilla P., Wyatt M., Moral V., Ménard F., Christiaens V., Cieza L., van der Plas G., 2015, ApJ, 812, 126 Chiang E., Youdin A. N., 2010, Annual Review of Earth and Planetary Sciences, 38, 493 Clarke C. J., Harper-Clark E., Lodato G., 2007, MNRAS, 381, 1543 Gammie C. F., 1996, ApJ, 457, 355 Gammie C. F., 2001, ApJ, 553, 174 Lin M.-K., Youdin A. N., 2015, ApJ, 811, 17 Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603 Marois C., Zuckerman B., Konopacky Q. M., Macintosh B., Barman T., 2010, Nature, 468, 1080 Nelson R. P., Gressel O., Umurhan O. M., 2013, MNRAS, 435, 2610 Paardekooper S.-J., 2012, MNRAS, 421, 3286 Rice W. K. M., Armitage P. J., Mamatsashvili G. R., Lodato G., Clarke C. J., 2011, MNRAS, 418, 1356 Rice W. K. M., Lodato G., Armitage P. J., 2005, MNRAS, 364, L56 Umurhan O. M., Nelson R. P., Gressel O., 2013, in European Physical Journal Web of Conferences Vol. 46 of European Physical Journal Web of Conferences, Breathing Life Into Dead-Zones. p. 3003 Willerding E., 1992, Earth Moon and Planets, 56, 173 M-K. Lin (Arizona) VSI/GI March 15 2016 26 / 26