MIT Spring 2016

Similar documents
LECTURE 8: ASYMPTOTICS I

This section is optional.

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables

Lecture 19: Convergence

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

STATISTICAL METHODS FOR BUSINESS

2.2. Central limit theorem.

EE 4TM4: Digital Communications II Probability Theory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

Parameter, Statistic and Random Samples

Lecture 20: Multivariate convergence and the Central Limit Theorem

The Central Limit Theorem

4. Partial Sums and the Central Limit Theorem

2.1. Convergence in distribution and characteristic functions.

Distribution of Random Samples & Limit theorems

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

Discrete Probability Functions

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

SDS 321: Introduction to Probability and Statistics

= p x (1 p) 1 x. Var (X) =p(1 p) M X (t) =1+p(e t 1).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

An Introduction to Asymptotic Theory

Variance of Discrete Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Chapter 2 Transformations and Expectations

Probability and Random Processes

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

AMS570 Lecture Notes #2

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Learning Theory: Lecture Notes

Lecture 5. Random variable and distribution of probability

Asymptotic distribution of products of sums of independent random variables

1.010 Uncertainty in Engineering Fall 2008

Extreme Value Theory in Civil Engineering

Characteristic functions and the central limit theorem

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

Statistical Theory MT 2008 Problems 1: Solution sketches

32 estimating the cumulative distribution function

Lecture 8: Convergence of transformations and law of large numbers

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall Midterm Solutions

Central Limit Theorem using Characteristic functions

4. Basic probability theory

Lecture 4. Random variable and distribution of probability

Statistical Theory MT 2009 Problems 1: Solution sketches

HOMEWORK I: PREREQUISITES FROM MATH 727

Chapter 6 Principles of Data Reduction

1 Convergence in Probability and the Weak Law of Large Numbers

Central limit theorem and almost sure central limit theorem for the product of some partial sums

STA Object Data Analysis - A List of Projects. January 18, 2018

6.041/6.431 Spring 2009 Final Exam Thursday, May 21, 1:30-4:30 PM.

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Elements of Statistical Methods Lots of Data or Large Samples (Ch 8)

Convergence of Binomial to Normal: Multiple Proofs

Lecture Chapter 6: Convergence of Random Sequences

Statistical Theory; Why is the Gaussian Distribution so popular?

Law of the sum of Bernoulli random variables

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

ST5215: Advanced Statistical Theory

5. Limit Theorems, Part II: Central Limit Theorem. ECE 302 Fall 2009 TR 3 4:15pm Purdue University, School of ECE Prof.

Probability review (week 2) Solutions

Notes 19 : Martingale CLT

Lecture 3 : Random variables and their distributions

Lecture 2: Concentration Bounds

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

MA Advanced Econometrics: Properties of Least Squares Estimators

Spring Information Theory Midterm (take home) Due: Tue, Mar 29, 2016 (in class) Prof. Y. Polyanskiy. P XY (i, j) = α 2 i 2j

Mathematics 170B Selected HW Solutions.

Solutions: Homework 3

Unbiased Estimation. February 7-12, 2008

Advanced Stochastic Processes.

Singular Continuous Measures by Michael Pejic 5/14/10

Stat 319 Theory of Statistics (2) Exercises

Statistics for Applications. Chapter 3: Maximum Likelihood Estimation 1/23

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Summary. Recap ... Last Lecture. Summary. Theorem

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Final Examination Statistics 200C. T. Ferguson June 10, 2010

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA STATISTICAL THEORY AND METHODS PAPER I

Lecture Notes 15 Hypothesis Testing (Chapter 10)

Solutions to Homework 2 - Probability Review

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Entropy Rates and Asymptotic Equipartition

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

Introductory statistics

Berry-Esseen bounds for self-normalized martingales

Lecture 6: Coupon Collector s problem

Lecture 7: Properties of Random Samples

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

Binomial Distribution

Approximations and more PMFs and PDFs

Topic 9: Sampling Distributions of Estimators

Lecture 6 Ecient estimators. Rao-Cramer bound.

6. Sufficient, Complete, and Ancillary Statistics

Transcription:

MIT 18.655 Dr. Kempthore Sprig 2016 1 MIT 18.655

Outlie 1 2 MIT 18.655

Beroulli s Weak Law of Large Numbers X 1, X 2,... iid Beroulli(θ). S i=1 = X i Biomial(, θ). S P θ. Proof: Apply Chebychev s Iequality, Khitchi s Weak Law of Large Numbers The X 1, X 2,... iid E [X 1 ] = µ, fiite 1 / S = i=1 X i S P µ. 3 MIT 18.655

Khitchi s WLLN Proof: If Var(X 1 ) <, apply Chebychev s Iequality. If Var(X 1 ) =, apply Levy-Cotiuity Theorem for characteristic fuctios. i φ (t) = E [e itx ] = E [e t X i X i=1 ] = i=1 φ X ( t ) = [φ X ( t )] = [1 + iµt + o( t )] e itµ. (characteristic fuctio of costat radom variable µ) So D P X µ, which implies X µ. 4 MIT 18.655

Limitig Momet-Geeratig Fuctios Cotiuity Theorem. Suppose X 1,..., X ad X are radom variables F 1 (t),..., F (t), ad F (t) are the correspodig sequece of cumulative distributio fuctios M X1 (t),..., M X (t) ad M X (t) are the correspodig sequece of momet geeratig fuctios. The if M (t) M(t) for all t i a ope iterval cotaiig zero, the F (x) F (x), at all cotiuity poits of F. i.e., L X X 5 MIT 18.655

Limitig Characteristic Fuctios Levy Cotiuity Theorem. Suppose X 1,..., X ad X are radom variables ad φ t (t),..., φ (t) ad φ X (t) are the correspodig sequece of characteristic fuctios. The L X X if ad oly if lim φ (t) = φ X (t), for all t R. Proof: See http://wiki.math.toroto.edu/torotomathwiki/images/ 0/00/MAT1000DaielRuedt.pdf 6 MIT 18.655

Outlie 1 7 MIT 18.655

De Moivre-Laplace Theorem If {S } is a sequece of Biomial(, θ) radom variables, (0 < θ < 1), the S θ L - Z, θ(1 θ) where Z has a stadard ormal distributio. Applyig the Cotiuity Correctio : P[k S m] = P k 1 S m + 1 [ 2 2 1 k 1 θ m+ θ 2 S θ 2 θ(1 θ) θ(1 θ) θ(1 θ) = P [ - [ - 1 m+ θ k 1 θ 2 2 Φ Φ θ(1 θ) θ(1 θ) 8 MIT 18.655

Cetral Limit Theorem X 1, X 2,... iid E [X 1 ] = µ, ad Var[X 1 ] = σ 2, both fiite (σ 2 > 0). = S i=1 X i The S µ L Z, σ where Z has a stadard ormal distributio. Equivaletly: ( 1 ṉ S µ) L Z. σ 2 / 9 MIT 18.655

: Cetral Limit Theorem Limitig Distributio of X X 1,..., X iid with µ = E [X ], ad mgf M X (t). i=1 X i The mgf of X = is M (t) = E[e tx ] = E [e 1 t X i X ] = E [e t X i ] = 1 1 M X ( t ) = [M X ( t )] Applyig Taylor s expasio, there exists t 1 : 0 < t 1 < t/: M X ( t ) = M X (0) + M ' (t 1 ) t X [M ' (t 1 ) M ' (0)]t = 1 + µt X + So t µt [M X ' (t 1 ) M ' (0)]t lim [M X ( )] = lim [1 + + ] = e µt P So X µ. 10 MIT 18.655

: Cetral Limit Theorem X µ (X µ) S µ Defie Z = = = σ/ σ σ where S = 1 X i. Note: Z : E [Z ] 0 ad Var[Z ] 1. M Z (t) = E [e tz ] = E exp{ t X i µ } i=1 σ t = i=1 M Y ( ) D X i µ ' '' σ Y Y where Y =, E [Y ] = 0 = M (0), ad E [Y 2 ] = 1 = M (0), ad M Y (t) = E [e ty ]. By Taylor s expasio, t 1 (0, t/ ) : t ' t '' t M Y ( ) = M Y (0) + M (0)( ) + 1 M (t 1 )( ) 2 Y 2 Y [MY yy (t 1 ) 1]t = 1 + t2 + 2 2 2 11 MIT 18.655

: Cetral Limit Theorem '' Y Sice lim [M (t 1 ) 1] = 1 1 = 0, '' t 2 [M Y (t 1 ) 1]t 2 lim M Z (t) = lim [1 + + ] 2 2 2 + t L = e 2, the mgf of a N(0, 1) so Z N(0, 1). 12 MIT 18.655

Classic Limit Theorem Examples Poisso Limit of Biomials {X }: X Biomial(, θ ) where lim θ = 0 lim θ = λ, with 0 < λ < L X Poisso(λ). 13 MIT 18.655

Classic Limit Theorem Examples Sample Mea of Cauchy Distributio X 1,..., X i.i.d. Cauchy(µ, γ) r.v.s; µ R, γ > 0 1 1 f (x θ) = ( ), < x <. πγ 1+( x µ ) γ 2 The characteristic fuctio of the Cauchy is φ X (t) = exp{iµt γ t } The characteristic fuctio of the sample mea is: t X i ] φ X (t) = E [e i 1 = i=1 φ t X ( t ) = [exp{iµ γ t }] = exp{iµt γ t } D So X = X 1 for every(!). 14 MIT 18.655

Berry-Essee Theorem If X 1,..., X iid with mea µ ad variace σ 2 > >>> 0, [ the for all, - > S µ >>> > P C E [ X 1 µ 3 ] sup t Φ(t). σ σ 3 t C = 33 4 : B&D, A.15.12. C = 0.4748: http://e.wikipedia.org/wiki/berry-essee_theorem, Shevtsova (2011) 15 MIT 18.655

Asymptotic Order Notatio U = o P (1) iff U P 0. U = O P (1) iff E > 0, M <, such that P[ U M] E U = o P (V ) iff U V = o P (1) U = O P (V ) iff U V = O P (1) 16 MIT 18.655

Asymptotic Order Notatio Example: Z 1,..., Z are iid as Z If E [ Z ] <, the by WLLN: Z = µ + o P (1). where µ = E [Z ]. If E [ Z 2 ] <, the by CLT: Z = µ + O P ( 1 ). 17 MIT 18.655

MIT OpeCourseWare http://ocw.mit.edu 18.655 Mathematical Statistics Sprig 2016 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.