Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid

Similar documents
Diffeomorphic Iterative Centroid Methods for Template Estimation on Large Datasets

Non Linear Observation Equation For Motion Estimation

Template estimation form unlabeled point set data and surfaces for Computational Anatomy

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

Easter bracelets for years

arxiv: v1 [cs.cv] 23 Nov 2017

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

Analysis of Boyer and Moore s MJRTY algorithm

A simple kinetic equation of swarm formation: blow up and global existence

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

On size, radius and minimum degree

Bayesian Principal Geodesic Analysis in Diffeomorphic Image Registration

Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding

Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer s Disease

Analyzing large-scale spike trains data with spatio-temporal constraints

Dispersion relation results for VCS at JLab

b-chromatic number of cacti

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Soundness of the System of Semantic Trees for Classical Logic based on Fitting and Smullyan

Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling

Factorisation of RSA-704 with CADO-NFS

Full-order observers for linear systems with unknown inputs

Thomas Lugand. To cite this version: HAL Id: tel

Gaia astrometric accuracy in the past

Completeness of the Tree System for Propositional Classical Logic

On Newton-Raphson iteration for multiplicative inverses modulo prime powers

Vibro-acoustic simulation of a car window

From Unstructured 3D Point Clouds to Structured Knowledge - A Semantics Approach

Non-parametric Diffeomorphic Image Registration with the Demons Algorithm

Hardware Operator for Simultaneous Sine and Cosine Evaluation

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

Exogenous input estimation in Electronic Power Steering (EPS) systems

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures

On Symmetric Norm Inequalities And Hermitian Block-Matrices

Fast Geodesic Regression for Population-Based Image Analysis

Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Stickelberger s congruences for absolute norms of relative discriminants

Fast Computation of Moore-Penrose Inverse Matrices

Passerelle entre les arts : la sculpture sonore

On Solving Aircraft Conflict Avoidance Using Deterministic Global Optimization (sbb) Codes

Hook lengths and shifted parts of partitions

Influence of a Rough Thin Layer on the Potential

Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models

The Windy Postman Problem on Series-Parallel Graphs

DEM modeling of penetration test in static and dynamic conditions

Metamorphic Geodesic Regression

3D-CE5.h: Merge candidate list for disparity compensated prediction

Comment on: Sadi Carnot on Carnot s theorem.

KERNEL PRINCIPAL COMPONENT ANALYSIS OF THE EAR MORPHOLOGY. Reza Zolfaghari, Nicolas Epain, Craig T. Jin, Joan Glaunès, Anthony Tew

How to make R, PostGIS and QGis cooperate for statistical modelling duties: a case study on hedonic regressions

Can we reduce health inequalities? An analysis of the English strategy ( )

Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series

On path partitions of the divisor graph

A non-commutative algorithm for multiplying (7 7) matrices using 250 multiplications

L institution sportive : rêve et illusion

Territorial Intelligence and Innovation for the Socio-Ecological Transition

IMPROVEMENTS OF THE VARIABLE THERMAL RESISTANCE

On the longest path in a recursively partitionable graph

Structural study of a rare earth-rich aluminoborosilicate glass containing various alkali and alkaline-earth modifier cations

Accelerating Effect of Attribute Variations: Accelerated Gradual Itemsets Extraction

Classification of high dimensional data: High Dimensional Discriminant Analysis

The Accelerated Euclidean Algorithm

The Core of a coalitional exchange economy

Towards an active anechoic room

approximation results for the Traveling Salesman and related Problems

Stator/Rotor Interface Analysis for Piezoelectric Motors

On Symmetric Norm Inequalities And Hermitian Block-Matrices

Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques

Multiple sensor fault detection in heat exchanger system

Unfolding the Skorohod reflection of a semimartingale

A Context free language associated with interval maps

Thermo-mechanical modelling of the aircraft tyre cornering

Widely Linear Estimation with Complex Data

On Poincare-Wirtinger inequalities in spaces of functions of bounded variation

Best linear unbiased prediction when error vector is correlated with other random vectors in the model

Numerical Modeling of Eddy Current Nondestructive Evaluation of Ferromagnetic Tubes via an Integral. Equation Approach

A Simple Model for Cavitation with Non-condensable Gases

Finite volume method for nonlinear transmission problems

The beam-gas method for luminosity measurement at LHCb

Improved Adaptive Resolution Molecular Dynamics Simulation

An efficient EM-ICP algorithm for symmetric consistent non-linear registration of point sets

The SyMoGIH project and Geo-Larhra: A method and a collaborative platform for a digital historical atlas

Positive mass theorem for the Paneitz-Branson operator

Population-shrinkage of covariance to estimate better brain functional connectivity

Electromagnetic characterization of magnetic steel alloys with respect to the temperature

A Simple Proof of P versus NP

The Mahler measure of trinomials of height 1

Spatial representativeness of an air quality monitoring station. Application to NO2 in urban areas

Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum

Using multitable techniques for assessing Phytoplankton Structure and Succession in the Reservoir Marne (Seine Catchment Area, France)

Diffeomorphic Shape Trajectories for Improved Longitudinal Segmentation and Statistics

Posterior Covariance vs. Analysis Error Covariance in Data Assimilation

Impairment of Shooting Performance by Background Complexity and Motion

Impedance Transmission Conditions for the Electric Potential across a Highly Conductive Casing

Social Network Analysis of the League of Nations Intellectual Cooperation, an Historical Distant Reading

FORMAL TREATMENT OF RADIATION FIELD FLUCTUATIONS IN VACUUM

Voltage Stability of Multiple Distributed Generators in Distribution Networks

A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

Transcription:

Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid Claire Cury, Joan Alexis Glaunès, Marie Chupin, Olivier Colliot To cite this version: Claire Cury, Joan Alexis Glaunès, Marie Chupin, Olivier Colliot. Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid. Constantino Carlos Reyes-Aldasoro and Greg Slabaugh. MIUA 2014 - Medical Image Understanding and Analysis 2014, Jul 2014, Egham, United Kingdom. pp.39-44, 2014. <hal-01050590> HAL Id: hal-01050590 https://hal.inria.fr/hal-01050590 Submitted on 25 Jul 2014 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS 1 Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid Claire Cury (a,b,c,d,e)1 claire.cury.pro@gmail.com Joan Alexis Glaunès 2 alexis.glaunes@mi.parisdescartes.fr Marie Chupin (a,b,c,d,e)1 marie.chupin@upmc.fr Olivier Colliot (a,b,c,d,e)1 olivier.colliot@upmc.fr The Alzheimer s Disease Neuroimaging Initiative 0. 1 a- Inserm U 1127, b- CNRS UMR 7225, c- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, d- Institut du Cerveau et de la Moelle épiniére, ICM, e- Inria Paris-Rocquencourt, Aramis project-team, 2 MAP5, Université Paris Descartes, Sorbonne Paris Cité, France Abstract A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to the population. The Large Deformation Diffeomorphic Metric Mapping framework is widely used for shape analysis of anatomical structures, but computing a template with such framework is computationally expensive. In this paper we propose a fast approach for templatebased analysis of anatomical variability. The template is estimated using a recently proposed iterative approach which quickly provides a centroid of the population. Statistical analysis is then performed using Kernel-PCA on the initial momenta that define the deformations between the centroid and each subject of the population. This approach is applied to the analysis of hippocampal shape on 80 patients with Alzheimer s Disease and 138 controls from the ADNI database. 1 Introduction Computational Anatomy aims at developing tools for the quantitative analysis of variability of anatomical structures, and its variation in healthy and pathological cases [8]. A common approach in Computational Anatomy is template-based analysis, where the idea is to compare anatomical objects variations relatively to a common template. These variations are analysed using the ambient space deformations that match each individual structure to c 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

2 CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS the template. The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework [1] has been widely used for the study of the geometric variation of human anatomy. This framework generates metrics between deformable shapes and provides smooth and non ambiguous matchings between objects. Estimating a template from the population in the LDDMM framework, to be used for further template-based statistical analysis, is a computationally expensive task. Several methods have been proposed. Vaillant et al. proposed in 2004 [12] a method based on geodesic shooting which iteratively updates a shape by shooting towards the mean directions. The method proposed by Glaunès and Joshi [7] starts from the whole population and estimates a template by co-registering all subjects using a backward scheme. A different approach was proposed by Durrleman et al. [4, 5]. The method initializes the template with a standard shape, and uses a forward scheme: deformations are defined from the template to the subjects. The method presented by Ma et al. [9] uses an hyper template which is an extra fixed shape, and optimizes at the same time deformations from the hyper template to the template and deformations from the template to subjects of the population. All these methods are expensive in terms of computation time, due to the iterations needed for the convergence of the method. In this paper, we propose a fast approach for template-based shape analysis in the LD- DMM framework. The template is estimated using an iterative approach which quickly provides a centroid of the population [3]. This method iteratively computes a centroid of the population in the LDDMM framework, which requires only N 1 matching steps, with N the number of subjects, while template estimation methods typically require N such steps per iteration. Using this centroid computation as initialization drastically reduces the computation time for template computation. We use this iterative centroid as a template to study the anatomical variability by analysing the deformations from the centroid to the subjects of the population using Kernel-PCA [10]. This approach was applied to 218 hippocampi (80 patients with Alzheimer s Disease, 138 controls) from the Alzheimer s Disease Neuroimaging Initiative (ADNI) database 1. 2 Methods 2.1 LDDMM framework We briefly present the LDDMM framework to introduce notations, for more details see [1]. Deformation maps ϕ :R 3 R 3 are generated via integration of time-dependent vector fields v(x,t),x R 3,t [0,1], such that each v(,t) belongs to a Reproducing Kernel Hilbert Space V with kernel K V. The transport equation { dφv dt (x,t)=v(φ v(x,t),t) t [0,1] φ v (x,0)=x x R 3 (1) has a unique solution, and one sets ϕ v = φ v (,1) the diffeomorphism induced by v(x,t). In a discrete setting, optimal vector fields v(x, t) are expressed as combinations of spline fields: v(x,t)= n p=1 K V(x,x p (t))α p (t), where x p (t)=φ v (x p,t) are the trajectories of control points x p (the vertices of the mesh to be deformed), and α p (t) R 3 are time-dependent vectors called momentum vectors. Optimal trajectories between shapes can be shown to 1 (adni.loni.usc.edu). The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University of California - San Francisco.

CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS 3 satisfy geodesic equations for a metric on the set of control points [12]. As a result the full deformation between a template shape and its surface target S i is encoded by the vector of initial momentum vectors α i (0)=(α i p(0)) 1 p ni located on the vertices of the template mesh. 2.2 Iterative Centroid method We proposed in 2013 [3] an Iterative Centroid method which use the LDDMM framework and the framework of currents [11]. The authors propose three different schemes for centroid computation, but here we only use the first one, which is the faster one. The Iterated Centroid method consists in applying the following procedure: given a collection of N shapes Si, we first set C1=S1 (initial centroid) and successively update the centroid by matching it to the next shape and moving it along the geodesic flow. (Algorithm 1). Data: N surfaces S i Result: 1 surface C N representing the centroid of the population C 1 = S 1 ; for i from 1 to N 1 do C i is matched to S i+1 which results in a deformation map φ v i(x,t); 1 Set C i+1 = φ v i(c i, i+1 ) which means we transport C i along the geodesic and stop at time t = i+1 1 ; end Algorithm 1: Iterative Centroid algorithm This algorithm can be defined in a pure Riemannian setting, for the averaging of a set of points p k (instead of shapes S i ) on a Riemannian manifold M. If points p k belong to a vector space and the metric is flat, the algorithm converges towards the mean 1 N k p k, but in general it depends on the ordering of the points. Back to our shape space framework, we showed in a previous study [3] that indeed the ordering changes the result, but the different results are very close to each other. Emery and Mokobodzki [6] proposed to define the centroid not as a unique point but as the set C N of points p M satisfying f(p) 1 N N k=1 f(p k), for any convex function f on M (a convex function f on M being defined by the property that its restriction to all geodesics is convex). This set C N takes into account all centroids obtained by bringing together points p k by all possible means, i.e. recursively by pairs, or by iteratively adding a new point, as we are doing with Algorithm 1. To further reduce the computational load, we used a GPU implementation for the kernel convolutions involved in the matchings. 2.3 Statistical Analysis For the statistical analysis of shapes, we compute a centroid of the population, and we use it as a template. Then we deform the centroid toward each shape of the population to obtain the deformations from the centroid to the population. The deformations are determined by the vector of initial momentum vectors α i (0); we can analyse these deformations with a Kernel-PCA [10] as in [12]. The Kernel-PCA is the non-linear version of the Principal Component Analysis (PCA) which can be used for learning shape variability from a training set, or for reducing dimensionality of the shape space. In fact the difference between the two versions is in the computation of the covariance matrix, which writes

4 CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS Cov(i, j)= 1 N 1 (αi (0) ᾱ(0))k V (x)(α j (0) ᾱ(0)), with ᾱ(0) the mean of initial momentum vectors and K V (x) the matrix of the K V (x i,x j ). Then we can run a standard PCA on the covariance matrix Cov. 3 Experiments and results Dataset The method was applied to the analysis of hippocampal shape of 80 patients with Alzheimer s Disease (AD) and 138 controls (CN) (N = 218) from the Alzheimer s Disease Neuroimaging Initiative (ADNI) database. Left hippocampi were segmented with the SACHA software (Chupin et al. [2]) from 3D T1 weighted MRI. Then the meshes were computed using the BrainVisa 2 software. They are composed of 800 vertices on average. Results We computed a centroid for each of the two populations (AD and CN) using Algorithm 1. The two centroids are denoted IC(AD) and IC(CN). Computation times were 2.4 hours for IC(AD) and 3.6 hours for IC(CN). To assess whether the centroids are close to the center of the respective population, we computed the ratio R = N 1 N i=1 v 0(S i ) V 1 between the N N i=1 v 0(S i ) V mean of the norms of initial vector fields from the centroid to the population and the norm of the mean of initial vector fields. Both ratios are 0.25, which means that both centroids are correctly centred even though they are not exactly at the Fréchet mean (which would correspond to R = 0). To visualise differences between IC(CN) and IC(AD), we computed distances between vertices (figure 1) of IC(CN) and the deformation of IC(CN) on IC(AD). Figure 1: Distances between IC(CN) and IC(AD). On the left, the hippocampus is viewed from below. We then analysed the variability of the AD and the CN populations using Kernel-PCA. Figure 2 shows, for each group, the principal mode of variation. This figure is obtained by geodesic shooting from each centroid in the first principal direction with a magnitude of ±2σ. One can note that, while the templates of the two groups are different, the variabilities of both groups share similarities. Nevertheless, there seems to be less variability in the medial part of the body for the CN group. In order to visualize the localization of IC(CN) and IC(AD) and their modes within the whole population, we computed a centroid of the whole population and performed the corresponding K-PCA. We then projected IC(CN) and IC(AD) on the two first principal 2 http://www.brainvisa.info

CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS 5 Figure 2: First mode of deformation of the AD group (top) and of the CN group (bottom). For each row, the centroid is in the center (in blue), on the right its deformation at +2σ, and at 2σ on the left. The colormap indicates the displacement of each vertex between the corresponding centroid and its deformation. components. We can observe (figure 3) that IC(CN) is on the left of the global centroid, and IC(AD) is on the right, and the 3 principal modes of variation have different directions. Figure 3: First principal modes of the whole population (in green). In blue, the projections of IC(CN) and projections of its deformations at ±2σ CN in the direction of its first mode of variation. In red, for the AD group. Intermediate points are show the trajectory of the first modes. 4 Conclusion In this paper, we proposed a new approach for fast template-based shape analysis in the LDDMM framework. The template is estimated using a diffeomorphic iterative centroid method. The Iterative Centroid is roughly centred within the population of shapes. Analysis of variability is then based on a Kernel-PCA of the initial momenta that define the deformations of the template to each individual. We applied this approach to the analysis of hippocampal shape in AD patients and control subjects. Projection of the templates of the CN group and the AD group onto the main modes of variability of the whole population show that they are located on the main axis of variability. The template estimation takes only a

6 CURY et al.: FAST TEMPLATE-BASED SHAPE ANALYSIS couple of hours for both populations (with about 100 subjects each). The low computational load of the proposed approach makes it applicable to very large datasets. Acknowledgments The research leading to these results has received funding from ANR (project HM-TC, grant number ANR-09-EMER-006, and project KaraMetria, grant number ANR-09-BLAN-0332) and from the program Investissements d avenir ANR-10-IAIHU-06. References [1] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2):139 157, 2005. [2] M. Chupin, A. Hammers, R. S. N. Liu, O. Colliot, J. Burdett, E. Bardinet, J. S. Duncan, L. Garnero, and L. Lemieux. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage, 46(3): 749 761, 2009. [3] C. Cury, J. A. Glaunés, and O. Colliot. Template Estimation for Large Database: A Diffeomorphic Iterative Centroid Method Using Currents. In Frank Nielsen and Frédéric Barbaresco, editors, GSI, volume 8085 of LNCS, pages 103 111. Springer, 2013. [4] S. Durrleman, X. Pennec, A. Trouvé, N. Ayache, et al. A forward model to build unbiased atlases from curves and surfaces. In 2nd Medical Image Computing and Computer Assisted Intervention. Workshop on M.F.C.A., pages 68 79, 2008. [5] S. Durrleman, M. Prastawa, J. R. Korenberg, S. Joshi, A. Trouvé, and G. Gerig. Topology Preserving Atlas Construction from Shape Data without Correspondence Using Sparse Parameters. In MICCAI 2012, LNCS, pages 223 230. Springer, 2012. [6] M. Emery and G. Mokobodzki. Sur le barycentre d une probabilité dans une variété. In Séminaire de probabilités, volume 25, pages 220 233. Springer, 1991. [7] J. A. Glaunès and S. Joshi. Template estimation from unlabeled point set data and surfaces for Computational Anatomy. In Proc. of the International Workshop on the MFCA-2006, pages 29 39, 2006. [8] U. Grenander and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly of applied mathematics, 56(4):617 694, 1998. [9] J. Ma, M. I. Miller, A. Trouvé, and L. Younes. Bayesian template estimation in computational anatomy. NeuroImage, 42(1):252 261, 2008. [10] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis. In Artificial Neural Networks ICANN 97, pages 583 588. Springer, 1997. [11] M. Vaillant and J. A. Glaunés. Surface matching via currents. In Information Processing in Medical Imaging, pages 381 392. Springer, 2005. [12] M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé. Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23:S161 S169, 2004.