A Minimal Supersymmetric Cosmological Model

Similar documents
Inflation from a SUSY Axion Model

Moduli Problem, Thermal Inflation and Baryogenesis

Supersymmetry in Cosmology

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Gravitino LSP as Dark Matter in the Constrained MSSM

Astroparticle Physics and the LC

Axino Phenomenology in the Kim-Nilles mechanism

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Dark Matter and Dark Energy components chapter 7

Revisiting gravitino dark matter in thermal leptogenesis

Cosmological Relaxation of the Electroweak Scale

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Introduction to Cosmology

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Big Bang Nucleosynthesis

Astroparticle Physics at Colliders

3.5 kev X-ray line and Supersymmetry

Dark Matter in Particle Physics

Asymmetric Sneutrino Dark Matter

Triple unification of inflation, dark matter and dark energy

Dynamics of the Peccei-Quinn Scale

Thermal Dark Matter Below an MeV

Naturalizing SUSY with the relaxion and the inflaton

Big Bang Nucleosynthesis and Particle Physics

Particle Interpretation of Dark Matter and Energy

Making Neutrinos Massive with an Axion in Supersymmetry

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Theory Group. Masahiro Kawasaki

Mixed axion/lsp dark matter: a new paradigm

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators

The Linear Collider and the Preposterous Universe

Dark matter, Neutrino masses in MSSM after sattelite experiments

Moduli-induced axion problem

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

The first one second of the early universe and physics beyond the Standard Model

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Astronomy 182: Origin and Evolution of the Universe

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi

The Matter-Antimatter Asymmetry and New Interactions

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

A Domino Theory of Flavor

Mirror World and Improved Naturalness

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

Naturalizing Supersymmetry with the Relaxion

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Neutrino Physics: Lecture 12

Models of New Physics for Dark Matter

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

SuperWeakly Interacting Massive Particle Dark Matter

Project Paper May 13, A Selection of Dark Matter Candidates

Cosmology II: The thermal history of the Universe

Leptogenesis with Composite Neutrinos

Overview of Dark Matter models. Kai Schmidt-Hoberg

Supersymmetry and Dark Matter

Inverse See-saw in Supersymmetry

A Supersymmetric Two-Field Relaxion Model

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Hot Big Bang model: early Universe and history of matter

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Electroweak Baryogenesis in Non-Standard Cosmology

Axion in Large Extra Dimensions

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Dark Radiation and Inflationary Freedom

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

Primordial Black Holes. Primordial black holes are hypothetical black holes that formed under conditions

Indirect signatures of. Gravitino Dark Matter p.1/33

Dark Matter WIMP and SuperWIMP

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

L Breaking: (Dark) Matter & Gravitational Waves

QCD axions with high scale inflation

Inflaton decay in supergravity and the new gravitino problem

Vacuum Energy and. Cosmological constant puzzle:

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Realistic Inflation Models

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

A model of the basic interactions between elementary particles is defined by the following three ingredients:

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

The Supersymmetric Axion and Cosmology

Supersymmetric dark matter with low reheating temperature of the Universe

Standard Model Thermodynamics: Effect on Gravitational Wave and Dark Matter

Effects of Reheating on Leptogenesis

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Inflation and the origin of structure in the Universe

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

Gravitino Dark Matter p.1/42. with broken R-parity

Intermediate scale supersymmetric inflation, matter and dark energy

RECENT PROGRESS IN SUSY DARK MATTER

Dark Radiation from Particle Decay

Naturalness and mixed axion-higgsino dark matter

Beyond the SM: SUSY. Marina Cobal University of Udine

Dark Matter from Non-Standard Cosmology

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Transcription:

A Minimal Supersymmetric Cosmological Model Ewan Stewart KAIST COSMO/CosPA 2010 University of Tokyo 29 September 2010 EDS, M Kawasaki, T Yanagida D Jeong, K Kadota, W-I Park, EDS G N Felder, H Kim, W-I Park, EDS R Easther, J T Giblin, E A Lim, W-I Park, EDS S Kim, W-I Park, EDS hep-ph/9603324 hep-ph/0406136 hep-ph/0703275 arxiv:0801.4197 arxiv:0807.3607

Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl 10 11 GeV ν R decay matter/antimatter? 10 28 s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements 10 13 s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration 10 10 yr time

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains n s 10 12 to 10 15

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 H 2 (Ψ Ψ 1 ) 2

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 H 2 (Ψ Ψ 1 ) 2 m 2 susy (Ψ Ψ 0 ) 2 M Pl

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy slow-roll inflation: H m inflaton m susy

Moduli and gravitinos Moduli are cosmologically dangerous. Nucleosynthesis constrains In the early universe n s 10 12 to 10 15 n s 107 m 2 susy (Ψ Ψ 0 ) 2 M Pl Moduli generated: H m susy after slow-roll inflation: H m inflaton m susy

Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl 10 11 GeV ν R decay matter/antimatter? 10 28 s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements 10 13 s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration 10 10 yr time

Standard model of cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl 10 11 GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster 10 28 s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements 10 13 s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration 10 10 yr time

Minimal Supersymmetric Standard Model W = λ u QH u ū + λ d QH d d + λe LH d ē + µh u H d

Minimal Supersymmetric Standard Model W = λ u QH u ū + λ d QH d d + λe LH d ē + µh u H d But µ? neutrino masses? strong CP?

Minimal Supersymmetric Cosmological Model W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

Minimal Supersymmetric Cosmological Model MSSM W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

Minimal Supersymmetric Cosmological Model MSSM neutrino masses W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ

Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0

Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0 V 0 V φ 0 φ

Minimal Supersymmetric Cosmological Model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 +λ µ φ 2 H u H d +λ χ φχ χ µ = λ µ φ 2 0 axion V 0 V φ 0 φ

Thermal inflation V V 0 RADIATION DOMINATION φ 0 φ

Thermal inflation V V 0 THERMAL INFLATION φ 0 φ

Thermal inflation V V 0 THERMAL INFLATION φ 0 φ

Thermal inflation V V 0 first order phase transition φ 0 φ

Thermal inflation V V 0 potential energy converted to particles φ 0 φ

Thermal inflation V V 0 MATTER DOMINATION φ 0 φ

Key properties of thermal inflation For φ 0 10 10 to 10 12 GeV

Key properties of thermal inflation For Large dilution φ 0 10 10 to 10 12 GeV 10 20 = pre-existing moduli sufficiently diluted

Key properties of thermal inflation For Large dilution φ 0 10 10 to 10 12 GeV 10 20 = pre-existing moduli sufficiently diluted Short duration N 10 = primordial perturbations from slow-roll inflation preserved on large scales

Key properties of thermal inflation For Large dilution φ 0 10 10 to 10 12 GeV 10 20 = pre-existing moduli sufficiently diluted Short duration N 10 = primordial perturbations from slow-roll inflation preserved on large scales Low energy scale V 1/4 0 10 6 to 10 7 GeV = moduli regenerated with sufficiently small abundance

Gravitational waves Ω GW 10 5 10 10 10 15 DECIGO INFLATION PREHEATING 10 20 10 25 10 30 PRIMORDIAL INFLATION 10 35 10 40 10 10 10 5 10 0 10 5 10 10 f Hz

Gravitational waves 10 5 Ω GW 10 10 10 15 DECIGO 10 20 10 25 10 30 10 35 PRIMORDIAL INFLATION THERMAL INFLATION INFLATION PREHEATING 10 40 10 10 10 5 10 0 10 5 10 10 f Hz

Baryogenesis Key assumption mlh 2 u = 1 ( m 2 2 L + mh 2 ) u < 0

Baryogenesis Key assumption m 2 LH u = 1 2 ( m 2 L + m 2 H u ) < 0 Implies a dangerous non-mssm vacuum with LH u (10 9 GeV) 2 and λ d QL d + λ e LLē = µlh u eliminating the µ-term contribution to LH u s mass squared. V our vacuum deeper vacuum 0 LH u, QL d, LLē

Reduction W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

Reduction W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ ( L = l e/ 2 ) ( 0, H u = ū = ( 0 0 0 ) (, Q = h u ), H d = 0 0 0 d/ 2 0 0 ) ( hd 0 φ = φ, χ = 0, χ = 0 ), ē = ( e/ 2 ), d = ( d/ 2 0 0 )

Potential V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2

Potential drives thermal inflation V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2

Potential drives thermal inflation lh u rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2

Potential drives thermal inflation lh u rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2

Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2

Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2 h d forced out

Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2 d and e held at origin h d forced out

Potential drives thermal inflation lh u rolls away φ rolls away V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 m 2 φ φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2 d and e held at origin lh u returns with rotation h d forced out

Potential drives thermal inflation lh u rolls away φ rolls away φ stabilized m 2 φ (φ 0) = α φ m 2 φ (0) V 0 + m 2 L l 2 m 2 H u h u 2 + m 2 H d h d 2 + m 2 d d 2 + m 2 e e 2 + m 2 φ(φ) φ 2 [ 1 + 2 A νλ ν l 2 hu 2 1 2 A dλ d h d d 2 1 ] 2 A eλ e h d e 2 A µ λ µ φ 2 h u h d + c.c. + λ ν lhu 2 2 + λ ν l 2 h u λ µ φ 2 2 h d + λ µ φ 2 h u + 1 2 λ dd 2 + 1 2 2 λ ee 2 lh u stabilized with fixed phase + λ d h d d 2 + λ e h d e 2 + 2λ µ φh u h d 2 + 1 2 g 2 ( h u 2 h d 2 l 2 + 1 2 d 2 + 1 2 e 2 ) 2 d and e held at origin lh u returns with rotation h d forced out

Baryogenesis MODULI DOMINATION φ = 0 h u h d = 0 lh u = 0 THERMAL INFLATION FLATON DOMINATION RADIATION DOMINATION φ > 0 φ φ 0 φ preheats φ decays h d > 0 d = e = 0 lh u > 0 brought back into origin with rotation n L < 0 nucleosynthesis preheating and thermal friction N L conserved l, h u, h d decay T > T EW n L n B dilution n B /s 10 10

Numerical simulation n L /n AD 0.15 0.1 0.05 0 0.05 0.1 0.15 mt 0 200 400 600 800 1000

Baryon asymmetry n B s n L n AD T d n AD n φ m φ (φ 0 )

Baryon asymmetry Using n B s n L n AD T d n AD n φ m φ (φ 0 ) n φ m φ (φ 0 ) φ 2 0, m 2 φ(φ 0 ) α φ m 2 φ(0), n AD m LHu l 2 0 l 0 10 9 GeV (10 2 ev m ν ) (mlhu TeV ) gives ( 10 12 ) ( ) 2 GeV µ T d 1 GeV TeV φ 0 n B s 10 10 ( nl /n AD 10 2 ) ( 10 12 ) 3 ( GeV 10 2 ev φ 0 m ν ) ( µ TeV ) 2 ( 10 1 α φ ) ( mlhu m φ (0) ) 2

Baryon asymmetry Using n B s n L n AD T d n AD n φ m φ (φ 0 ) n φ m φ (φ 0 ) φ 2 0, m 2 φ(φ 0 ) α φ m 2 φ(0), n AD m LHu l 2 0 l 0 10 9 GeV (10 2 ev m ν ) (mlhu TeV ) gives ( 10 12 ) ( ) 2 GeV µ T d 1 GeV TeV φ 0 n B s 10 10 ( nl /n AD 10 2 ) ( 10 12 ) 3 ( GeV 10 2 ev φ 0 m ν ) ( µ TeV ) 2 ( 10 1 α φ ) ( mlhu m φ (0) ) 2 which suggests φ 0 10 12 GeV

Dark matter candidates Peccei-Quinn symmetry W = λ u QH u ū +λ d QH d d +λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

Dark matter candidates Peccei-Quinn symmetry DFSZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ

Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ Axion m a Λ2 QCD 2 φ0 where f a = f a N ( 10 6.2 10 6 12 ) GeV ev f a

Dark matter candidates Peccei-Quinn symmetry DFSZ axion KSVZ axion W = λ u QH u ū +λ d QH d d +λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ Axion m a Λ2 QCD 2 φ0 where f a = f a N ( 10 6.2 10 6 12 ) GeV ev f a Axino mã = 1 16π 2 λ 2 χa χ χ 1 to 10 GeV

Dark matter genesis thermal inflation

Dark matter genesis thermal inflation first order phase transition flaton = saxino matter domination

Dark matter genesis thermal inflation first order phase transition flaton = saxino matter domination decay radiation domination

Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos radiation domination

Dark matter genesis thermal inflation first order phase transition axinos decay NLSP decay flaton = saxino matter domination decay radiation domination

Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos NLSP decay radiation domination QCD phase transition axions

Dark matter genesis thermal inflation first order phase transition decay flaton = saxino matter domination decay axinos NLSP decay radiation domination QCD phase transition axions

Dark matter abundance Axion Axino

Dark matter abundance Axion Misalignment Axino ( f a Ω a 3 10 12 GeV ) 1.2

Dark matter abundance Axion Misalignment ( f a Ω a 3 10 12 GeV ) 1.2 Axino Flaton decay ( αã ) 2 ( mã ) ( 3 10 12 ) 2 ( ) GeV 1 GeV Ωã 0.04 10 1 1 GeV φ 0 T d

Dark matter abundance Axion Misalignment ( f a Ω a 3 10 12 GeV ) 1.2 Axino Flaton decay ( αã ) 2 ( mã ) ( 3 10 12 ) 2 ( ) GeV 1 GeV Ωã 0.04 10 1 1 GeV Thermal NLSP decay ( mã ) ( 10 12 GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 T d

Dark matter abundance Flaton decays late Axion Misalignment ( µ T d 1 GeV TeV ( f a Ω a 3 10 12 GeV ) 1.2 ) 2 ( 10 12 ) GeV Axino Flaton decay ( αã ) 2 ( mã ) ( 3 10 12 ) 2 ( ) GeV 1 GeV Ωã 0.04 10 1 1 GeV Thermal NLSP decay ( mã ) ( 10 12 GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 φ 0 T d

Dark matter abundance Flaton decays late ( µ T d 1 GeV TeV ) 2 ( 10 12 ) GeV φ 0 Axion Misalignment ( ) 1.2 f a Ω a 3 10 12 GeV 1 for T d 1 GeV ( ) 2 Td for T d 1 GeV 1 GeV Axino Flaton decay ( αã ) 2 ( mã ) ( 3 10 12 ) 2 ( ) GeV 1 GeV Ωã 0.04 10 1 1 GeV Thermal NLSP decay ( mã ) ( 10 12 GeV Ωã 10 1 GeV φ 0 ) 2 φ 0 T d

Dark matter abundance Flaton decays late ( µ T d 1 GeV TeV ) 2 ( 10 12 ) GeV φ 0 Axion Misalignment ( ) 1.2 f a Ω a 3 10 12 GeV 1 for T d 1 GeV ( ) 2 Td for T d 1 GeV 1 GeV Axino Flaton decay ( αã ) 2 ( mã ) ( 3 10 12 ) 2 ( ) GeV 1 GeV Ωã 0.04 10 1 1 GeV φ 0 T d Thermal NLSP decay ( mã ) ( 10 12 ) 2 GeV Ωã 10 1 GeV φ 0 1 for T d m N ( ) 7 7 7Td for T d m N 7 m N

Dark matter composition 10 1 10 0 Ω f a = 10 12 GeV mã = 1 GeV axions 10 1 flaton axinos NLSP axinos 10 2 10 2 10 3 10 4 µ GeV

Axino LHC signal NLSPs produced by the LHC decay to axinos plus Standard Model particles LHC NLSP axino SM

Axino LHC signal NLSPs produced by the LHC decay to axinos plus Standard Model particles LHC NLSP 1 km axino SM with a decay length ( 1 16πφ2 0 200 GeV Γ N ã mn 3 1 km m N and well constrained parameters φ 0 10 12 GeV mã 1 GeV ) 3 ( φ 0 10 12 GeV ) 2

Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ axion

Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ axion thermal inflation

Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ baryogenesis axion thermal inflation

Simple model MSSM neutrino masses MSSM µ-term drives m 2 φ < 0 W = λ u QH u ū + λ d QH d d + λe LH d ē + 1 2 λ ν (LH u ) 2 + λ µ φ 2 H u H d + λ χ φχ χ baryogenesis axion/axino dark matter thermal inflation

Rich cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl 10 11 GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster 10 28 s 10 3 GeV 100 kev electroweak transition neutralino freeze out QCD transition nucleosynthesis matter/antimatter? neutralino dark matter? axion dark matter? light elements 10 13 s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration 10 10 yr time

Rich cosmology (density) 1/4 m Pl inflation density perturbations gravitational waves? t Pl 10 11 GeV ν R decay moduli, gravitinos,... matter/antimatter? disaster 10 28 s 10 3 GeV 100 kev thermal inflation LH u 0 φ decay QCD transition nucleosynthesis gravitational waves? matter/antimatter axino dark matter axion dark matter light elements 10 13 s 10 min 10 K atom formation galaxy formation vacuum energy dominates microwave background galaxies acceleration 10 10 yr time

A Minimal Supersymmetric Cosmological Model Introduction Standard model of cosmology Moduli and gravitinos A Minimal Supersymmetric Cosmological Model MSSM MSCM Thermal inflation Baryogenesis Dark matter Summary Simple model Rich cosmology