Neutrino Oscillation Tomography

Similar documents
Neutrino Radiography of the Earth with the IceCube Neutrino Observatory

Sungkyunkwan University, Korea

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Lessons from Neutrinos in the IceCube Deep Core Array

Recent results from Super-Kamiokande

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

arxiv: v1 [hep-ex] 20 Jan 2016

Neutrino Physics: an Introduction

Status and Perspectives for KM3NeT/ORCA

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

PoS(EPS-HEP2015)068. The PINGU detector

From DeepCore to PINGU

KM3NeT-ORCA: Oscillation Research with Cosmics in the Abyss

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino Applications

KM3NeT/ORCA. R. Bruijn University of Amsterdam/Nikhef. Phystat-Nu 2016 Tokyo

IceCube Results & PINGU Perspectives

Neutrino Physics: Lecture 1

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Atmospheric Neutrinos and Neutrino Oscillations

( Some of the ) Lateset results from Super-Kamiokande

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Neutrino Oscillations and the Matter Effect

Astroparticle physics

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

Solar and atmospheric ν s

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

PoS(NEUTEL2015)056. Neutrino mass hierarchy with PINGU

Analyzing Data. PHY310: Lecture 16. Road Map

Recent T2K results on CP violation in the lepton sector

The future of neutrino physics (at accelerators)

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

A study on different configurations of Long Baseline Neutrino Experiment

Neutrino Physics: an Introduction

Particle Physics Beyond Laboratory Energies

KM3NeT - ORCA: Measuring neutrino oscillations and the mass hierarchy in the Mediterranean Sea

Neutrino Astronomy fast-forward

Radio-chemical method

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

KM3NeT - ORCA: measuring the neutrino mass ordering in the Mediterranean

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine

Gadolinium Doped Water Cherenkov Detectors

Sensitivity of the DUNE Experiment to CP Violation. Lisa Whitehead Koerner University of Houston for the DUNE Collaboration

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

arxiv: v1 [hep-ex] 11 May 2017

The Hyper-Kamiokande project

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

High Energy Neutrino Astrophysics Latest results and future prospects

High Energy Neutrino Astronomy

arxiv: v1 [physics.ins-det] 14 Jan 2016

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

1. Neutrino Oscillations

The T2K Neutrino Experiment

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Long baseline experiments

Solar neutrinos and the MSW effect

arxiv: v1 [hep-ex] 30 Nov 2009

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino induced muons

Recent Results from T2K and Future Prospects

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Probing Neutrinos by DSNB(Diffuse Supernova Neutrino Background) Observation

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Oscillations

KM3NeT and Baikal-GVD New Northern Neutrino Telescopes

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Neutrinos From The Sky and Through the Earth

EeV Neutrinos in UHECR Surface Detector Arrays:

Learning from Atmospheric Neutrinos in the IceCube Deep Core Detector

GADZOOKS! project at Super-Kamiokande

1 Introduction. 2 Nucleon Decay Searches

neutrino astronomy francis halzen University of Wisconsin

IceCube: Ultra-high Energy Neutrinos

PoS(ICRC2017)945. In-ice self-veto techniques for IceCube-Gen2. The IceCube-Gen2 Collaboration

The NOνA Experiment and the Future of Neutrino Oscillations

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA)

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France

IceCube: Dawn of Multi-Messenger Astronomy

arxiv:hep-ph/ v1 5 Mar 2004

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

JHFnu at J-PARC neutrino oscillation experiment

Prospects of Reactor ν Oscillation Experiments

Neutrino Oscillations

Transcription:

1 Neutrino Oscillation Tomography (and Neutrino Absorption Tomography) (and Neutrino Parametric-Refraction Tomography) Sanshiro Enomoto University of Washington CIDER Geoneutrino Working Group Meeting, UCSB, 1 July 2014

Everything Shown Here was Taken from: 2 and references in there

Atmospheric Neutrinos primary cosmic ray (proton) Super-Kamiokande in Japan (10 MeV ~ 100 GeV) 3 40 m 50 kt Ice Cube at South Pole (100 GeV ~ ) Detection by Charged-Current ν µ + N + X 1000 m Deep-Core (10 GeV ~ ) 0.02 km 3 1 km 3

Atmospheric Neutrinos and Neutrino Oscillation 4 Probability of detecting ν μ after distance L P ( ν µ ν µ ) ν µ 1- sin 2 3 10 3 L E / km / GeV (w/o matter effects) ν e ν τ Energy (GeV) Survival Probability 10 GeV Zenith Angle Distance

Oscillation Tomography using Matter Effect Neutrino oscillation is affected by Electron Density 5 D. R. Grant, Neutrino 2014

Neutrino Oscillation though Earth P( ν µ ~ P( ν µ Normal Hierarchy IH P( ν µ ~ P( ν µ Inverted Hierarchy NH 6 Energy (GeV) Survival Probability Energy (GeV) Survival Probability 10 GeV cos(zenith angle) cos(zenith angle) Core

Neutrino Oscillation though Earth P( ν µ ~ P( ν µ Normal Hierarchy IH P( ν µ ~ P( ν µ Inverted Hierarchy NH 7 Energy (GeV) MSW Resonance on θ 13 (adiabatic) & Parametric Enhancement (non-adiabatic) Survival Probability Energy (GeV) Survival Probability 10 GeV cos(zenith angle) cos(zenith angle) Core

Neutrino Oscillation though Earth P( ν µ ~ P( ν µ Normal Hierarchy IH P( ν µ ~ P( ν µ Inverted Hierarchy NH 8 Energy (GeV) MSW Resonance on θ 13 (adiabatic) & Parametric Enhancement (non-adiabatic) Survival Probability Energy (GeV) Survival Probability 10 GeV cos(zenith angle) cos(zenith angle) Core

Neutrino Oscillation though Earth P( ν µ ~ P( ν µ Normal Hierarchy IH P( ν µ ~ P( ν µ Inverted Hierarchy NH 9 Energy (GeV) MSW Resonance on θ 13 (adiabatic) & Parametric Enhancement (non-adiabatic) Survival Probability Energy (GeV) Survival Probability 10 GeV cos(zenith angle) cos(zenith angle) Core

Sensitivity to Core Z/A If Density is known, electron density gives Z/A ratio Z/A Ratio: Hydrogen: 1 Light Elements: 0.5 Mantle (Pyrolite): 0.4957 6.5% difference Iron: 0.4656 10 Iron Core (Z/A=0.4656) Normal Hierarchy Pyrolite (Z/A=0.4957)

Wish List Gigantic Detector (~ Mega ton) Dense Detector (~1 GeV threshold) Good Energy and Angular Sensitivity Normal Hierarchy Preferred (antineutrino cross-section is smaller) Atmospheric Neutrino Flux 11 Neutrino Charged-Current Cross-section Ice-Cube is too sparse (Deep-Core detects E >10GeV) Super-Kamiokande is too small (total 50 k-ton)

PINGU: Ice-Cube Upgrade for Lower Energy 12 arxiv:1401.2046 (9 Jan 2014) ~3 M-ton effective volume x20 photo cathode density sensitivity downto few GeV $100M, ready in ~5 years

Hyper-Kamiokande (Super-K successor) 13 arxiv:1109.3262 (15 Sep 2011) 0.99 M-ton 20% photo coverage few MeV threshold

PINGU: Sensitivity to Core Z/A 14 Iron Core Pyrolite Normal Hierarchy Difference in ν μ Survival Probability PINGU volume (40 string) PINGU energy resolution (ΔE/E = 0.33) PINGU angular resolution (Δθ=15 ) PINGU systematic errors Difference in Number of Events Normal Hierarchy 0.45 Inverted Hierarchy 0.20 1 yr 1 yr 0 0-0.45-0.20

PINGU: Sensitivity to Core Z/A 15 PINGU 5 yr Fe: 0.4656 Pyrolite: 0.4957 (+6.5% to all-fe)

PINGU: Sensitivity to Core Z/A 16 PINGU 5 yr Fe: 0.4656 Pyrolite: 0.4957 (+6.5% to all-fe) Fe + H (1 wt%): 0.4709 (+1.0% to all-fe)

PINGU: Sensitivity to Core Z/A 17 Pyrolite model can be tested at 1σ after 5 years (Normal Hierarchy) Inverted Hierarchy will limit the sensitivity to ~20%, because antineutrino cross-section is half of neutrinos... Dependence on θ 13 value is small Better energy resolution will largely improve the sensitivity

Hyper-Kamiokande might do it better 18 Better energy and angular resolutions ν e channel usable Smaller active volume?? 50 m HK: 1 M-ton water cherenkov PINGU Hyper-Kamiokande

Low-energy sensitivity increases effective volume 19 Hyper-Kamiokande Letter of Intent arxiv:1109.3262 (15 Sep 2011) PINGU Partially-Contained Event μ ν μ

Neutrino Absorption Tomography Kotoyo Hoshina, AGU Fall 2012 20

Neutrino Absorption Tomography Kotoyo Hoshina, AGU Fall 2012 21

Neutrino Absorption Tomography Kotoyo Hoshina, AGU Fall 2012 22

Neutrino Absorption Tomography Kotoyo Hoshina, AGU Fall 2012 23

Appendix: Parametric Enhancement is Sensitive to CMB? 24 Energy (GeV) MSW Resonance on θ 13 (adiabatic) & Parametric Enhancement (non-adiabatic) Survival Probability 10 GeV Transition probability depends on structures of density step cos(zenith angle) Core

Summary 25 Neutrino Oscillation Tomography Direct measurement of core composition Uses oscillation matter effect (MSW) at 1~10 GeV PINGU will measure Z/A at ~8% accuracy (NH case), possibly better Inverted hierarchy will limit the sensitivity to ~20% Hyper-Kamiokande might be able to do it better ORCA (KM3NeT, 1.8 M-ton in sea water) can do the same? Neutrino Absorption Tomography Direct measurement of core density Uses neutrino absorption at ~10 TeV 10 yr Ice-Cube will discriminate core from mantle

Back Up 26

Photo Coverage vs Energy Threshold 27 D. R. Grant, Neutrino 2014

MSW Resonance 28 antineutrinos neutrinos

Atmospheric Neutrino Composition 29 M. Honda et al, Phys Rev D 70, 043008 (2004)