RAMIFICATIONS of POSITION SERVO LOOP COMPENSATION

Similar documents
Physics 20 Lesson 9H Rotational Kinematics

The Buck Resonant Converter

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Control Systems. Mathematical Modeling of Control Systems.

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

DC-DC Switch-Mode Converters

Homework 12 Solution - AME30315, Spring 2013

P a g e 5 1 of R e p o r t P B 4 / 0 9

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

A L A BA M A L A W R E V IE W

Average Small-Signal Modelling of the Power Stage of Power Factor Correctors with a Fast Output- Voltage Feedback Loop

Microelectronic Circuits. Feedback. Ching-Yuan Yang

CURRENT LOOPS George W. Younkin, P.E. Life Fellow IEEE Industrial Controls Research, Inc. Fond du Lac, Wisconsin

Solution in semi infinite diffusion couples (error function analysis)

Chapter 8. Root Locus Techniques

Lesson #15. Section BME 373 Electronics II J.Schesser

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

TP B.2 Rolling resistance, spin resistance, and "ball turn"

Introduction. If there are no physical guides, the motion is said to be unconstrained. Example 2. - Airplane, rocket

CHAPTER II AC POWER CALCULATIONS

Homework Assignment No. 3 - Solutions

A Demand System for Input Factors when there are Technological Changes in Production

The Simple Linear Regression Model: Theory

The Signal, Variable System, and Transformation: A Personal Perspective

R th is the Thevenin equivalent at the capacitor terminals.

The ZCS Boost Converter

Induction Motor Drive

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:

Chapter 9 Compressible Flow 667

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

A. Inventory model. Why are we interested in it? What do we really study in such cases.

Faculty of Engineering

Mechanics Physics 151

Assignment 16. Malaria does not affect the red cell count in the lizards.

Unit-I (Feedback amplifiers) Features of feedback amplifiers. Presentation by: S.Karthie, Lecturer/ECE SSN College of Engineering

P a g e 3 6 of R e p o r t P B 4 / 0 9

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Sound Transmission Throough Lined, Composite Panel Structures: Transversely Isotropic Poro- Elastic Model

Convection and conduction and lumped models

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

Microelectronic Circuits II. Ch 8 : Frequency Response

PT380 MULTICHANNEL TIMER SPECIFICATIONS FEATURES PRODUCT CODE MODES OF OPERATION FUNCTIONS TERMINAL CONNECTION

10.5 Linear Viscoelasticity and the Laplace Transform

Introduction to SLE Lecture Notes

Dishonest casino as an HMM

FUZZY n-inner PRODUCT SPACE

18.03SC Unit 3 Practice Exam and Solutions

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Chapter 3: Vectors and Two-Dimensional Motion

Power System Stability GENERATOR CONTROL AND PROTECTION

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

Efficient Estimators for Population Variance using Auxiliary Information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

Chapters 2 Kinematics. Position, Distance, Displacement

β A Constant-G m Biasing

u(t) Figure 1. Open loop control system

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

Anisotropic Behaviors and Its Application on Sheet Metal Stamping Processes

Ch5 Appendix Q-factor and Smith Chart Matching

21.9 Magnetic Materials

Mechanics Physics 151

Chapter 8: Response of Linear Systems to Random Inputs

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Matrix reconstruction with the local max norm

T h e C S E T I P r o j e c t

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

AN Motion Profiles

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

Circuit Theorems. Introduction

Chapter 9 - The Laplace Transform

The automatic optimal control process for the operation changeover of heat exchangers

Scattering of two identical particles in the center-of. of-mass frame. (b)

Linear Response Theory: The connection between QFT and experiments

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Section I5: Feedback in Operational Amplifiers

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Design of Analog Integrated Circuits

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Chapter 13. Root Locus Introduction

phy 3.1.notebook September 19, 2017 Everything Moves

Visco-elastic Layers

A SIMPLE PRECIPITATION MODEL 1

Selected Student Solutions for Chapter 2

Cooling of a hot metal forging. , dt dt

Grumman F-14 Tomcat Control Design BY: Chike Uduku

2015 Sectional Physics Exam Solution Set

Richard s Transformations

CHM 101 PRACTICE TEST 1 Page 1 of 4

Diodes Waveform shaping Circuits

Topological Proof of the Riemann-Hurwitz Theorem

A Theoretical Model of a Voltage Controlled Oscillator

EE202 Circuit Theory II

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

Chapter 2 Linear Mo on

Transcription:

RAMIFICATIONS f POSITION SERO LOOP COMPENSATION Gerge W. Yunk, P.E. Lfe Fellw IEEE Indural Cnrl Cnulg, Inc. Fnd du Lac, Wcn Fr many year dural pg er dre dd n ue er cmpena he frward p lp. Th wa referred a a naked er. The rean wa ha egral cmpena he frward p lp culd reul underable erh. Th wa epecally eden mache-l cnurg pera where a crner wa requred he mached par. Fr hee pera, any erh a pg er wuld reme undered meal n an de crner he mached par. T udy hee erh phenmena a ere f ranen repne analye are made fr ypcal dural pg er. I aumed ha he ernal elcy er ha a 0 Hz 88 rad/ec bandwdh. Furher, mplfy he analye, wll be aumed ha he lad dynamc hae a mechancal renance me he elcy er bandwdh 0 Hz, and perfrmance wll n be degraded uffcenly affec he ranen analy. Furher wll be aumed ha he er dre ha been zed prperly prde uffcen rque ercme frc le, accelerae he lad prperly, and prde uffcen mache hru a needed. T prceed wh hee analye, neceary wre he cmplee cled lp dfferenal equa wh al cnd, and hen le fr he me repne equa fr he fllwg repne: A elcy accelera a fal alue. B P accelera repne. C elcy decelera frm an al elcy. D P decelera frm an al p. NAKED POSITION SERO A a cnrl, he fr mdel be uded wll be fr a clacal naked p er dre wh a elcy cnan K pm/ml 6.66/ec. The mr elcy er lp ha a ypcal bandwdh f 0 Hz. The Bde pl fr h mdel hwn f fgure, and he mahemacal prf gen appendx I. The fur ranen repne e are- A The elcy accelera repne hwn fgure fr a ep pu 00 pm. The repne nrmal wh n erh elcy. B The p accelera f fgure, a lear ramp a expeced. C The elcy decelera f fgure 4 a expeced frm an al cnan elcy f 0 pm wh n erh. D The p decelera frm an al p f 0 che hwn fgure 5 wh n erh.

0/ LAG-LEAD POSITION SERO Th mdel ue a lag/lead cmpena he frward p lp. The apparen elcy cnan K 58/ec. An ernal elcy er lp ex wh a 0 Hz bandwdh. The Bde pl fr h mdel hwn fgure 6, wh he mahemacal prf gen appendx II. The fur ranen repne e are- A The elcy accelera repne a 00 pm ep elcy hwn fgure 7. A mall erh elcy hwn. B The p repne a 00 pm ep elcy hwn fgure 8. The repne unremarkable. C The elcy decelera repne frm an al cnan elcy f 0 pm hwn fgure 9 wh a mall erh a expeced wh egral cmpena he p frward lp. D The p decelera frm an al p f 0 che hwn fgure 0. The erh he p repne underable fr dural mache pg er beg ued a cnurg mde f pera. TYPE POSITION SERO The ype p lp cmpena ue prpral plu egral PI cmpena he frward p lp. The p lp ga wa chen a 79/ec 4.7 pm/ml. The ernal elcy er ha a bandwdh f 0 Hz. A Bde pl fr h mdel hwn fgure wh he mahemacal prf gen appendx III. The ranen repne e are- A The elcy accelera repne a 00 pm ep elcy hwn fgure. The amun f erh abe 00 pm abu 6 pm r abu 6 percen. Th amun f erh larger han he cmparable 0/ lag-lead cmpena mdel f fgure 7. B The p repne a 00 pm ep elcy hwn fgure and unremarkable. C The elcy decelera repne frm an al cnan elcy f 0 pm hwn fgure 4 wh an erh he frward p lp. The amun f erh abu wce a much cmpar he 0/ lag-lead cmpena f fgure 9. D The p decelera repne frm an al p f 0 che hwn fgure 5. The erh abu wce a grea a he 0/ lag-lead cmpena mdel f fgure 0. I underable fr dural mache pg er beg ued a cnurg mde f pera.

DISCUSSION Fr dural pg er dre a naked cmpena n egral cmpena he frward p lp de n dcae any erh he decelera mde fr elcy r p. Fr machg pera n dural mache h an mpran requremen uch machg pera quare crner, ec. Fr dural pg er dre ug lag/lead cmpena r prpral plu egral PI cmpena, and ype cnrl, he er dre wll exhb erh characerc durg decelera. The larger he al elcy, he greaer he erh durg decelera. Of he w ype f p lp cmpena, he ype er exhb greaer erh. freq. rep. Db, Degree 0 lg g j w 0 lg c j w 80 π argc j w 00 70 40 0 0 50 80 0 40 70 00 0. 0 00.0 gjw cjw Phae w rad/ec Fg Naked P. Ser Rerpne

/m c 00 95 90 85 80 75 70 65 60 55 50 45 40 5 0 5 0 5 0 5 0 0 0.050.050.0750.0.0.50.80.0.0.50.80.0.0.50.80.40.40.450.480.5 me ec el. /m Fg el. Accel.-Naked er 4

P- c 00 95 90 85 80 75 70 65 60 55 50 45 40 5 0 5 0 5 0 5 0 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme-ec pu ep00 P.accel. Fg. P. Accel.-Naked er elcy -pm c 0 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 4.5 4.5.5.5 0.5 0 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec Inpu0 pm el.decel. Fg. 4 el. Decel.-Naked er 5

P - c 0 9. 8.67 8 7. 6.67 6 5. 4.67 4..67. 0.67 0 0 0.067 0. 0. 0.7 0. 0.4 0.47 0.5 0.6 0.67 0.7 0.8 0.87 0.9 Tme ec pu0pm P. Decel. Fg. 5 P Decel. -Naked er 6

Madnude Db, Phae degree 0 lg g j w 0 lg j w 80 π arg j w 00 70 40 0 0 50 80 0 40 70 00 0. 0 00.0 gjw jw Phae w rad/ec Fg. 6 Lag/lead p. cmp. elcy - pm c 50 4.5 5 7.5 0.5 05 97.5 90 8.5 75 67.5 60 5.5 45 7.5 0.5 5 7.5 0 0 0.05 0. 0.5 0. 0.5 0.0.5 0.4 0.45 0.5 0.55 0.6 0.650.7 0.75 0.8 0.85 0.9 0.95 Tme ec pu00pm elcy Fg. 7 el. Accel.-0/ lag-lead 7

P - c 00 95 90 85 80 75 70 65 60 55 50 45 40 5 0 5 0 5 0 5 0 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec P. Fg. 8 P. Accel. 0 lag-lead elcy-pm 0 9.5 8.5 7.75 6.5 7 5.5 4.75.5 4.5.75 0.5 0.5.5.75.5 4.5 5 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9....4.5.6.7.8.9 Tme - ec pu0pm el. Decel. Fg. 9 elcy Decel.0 lag-lead 8

P- c 0.94 0.88 0.8 0.76 0.7 0.64 0.58 0.5 0.46 0.4 0.4 0.8 0. 0.6 0. 0.04 0.0 0.08 0.4 0. 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec P Fg. 0 P. decel.0 lag-lead 9

Magnude Db, Phae Degree 0 lg g j w 0 lg x j w 80 arg x j w π 60 56 5 48 44 40 6 8 4 0 6 8 4 0 4 8 6 0 0. 0 00. 0 gjw xjw Phae w rad/ec Fg. Type Ser Freq. Repne elcy /m c 50 4.5 5 7.5 0.5 05 97.5 90 8.5 75 67.5 60 5.5 45 7.5 0.5 5 7.5 0 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec elcy Fg. elcy Accel. Type Ser 0

P - c 0 06 99 9 85 78 7 64 57 50 4 6 9 5 8 6 0 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec P Fg. P Accel. Type Ser elcy - /m c 0 9.4 8.8 8. 7.6 7 6.4 5.8 5. 4.6 4.4.8..6 0.4 0. 0.8.4 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec elcy Fg. 4 elcy Decel. Type Ser

P - c 0.94 0.88 0.8 0.76 0.7 0.64 0.58 0.5 0.46 0.4 0.4 0.8 0. 0.6 0. 0.04 0.0 0.08 0.4 0. 0 0.05 0. 0.5 0. 0.5 0. 0.5 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Tme ec_ P Fg. 5 P Decel Tyep Ser APPENDI I NAKED SERO COMPENSATION 6.66 θ θ 0.005 6. 66 [0.005 6.66] 6.66 0.005 0 0 0 6.66 6.66 0.005 0.005 0 0.005 0 0 6.66 6.66 0 0 0

005 0. 6.66 6.66 0.005 6.66 0.005 0.005 6.66 0.005 6.66 4 88 88 4 88 4 ELOCITY ACCELERATION F 4 88 4 F Ia ELOCITY DECELERATION 4 88 88 POSITION ACCELERATION 45 88 4 F POSITION DECELERATION 4 88 88 Ib

APPENDI II 0/ LAG-LEAD COMPENSATION K K K K K K INITIAL CONDITIONS 0 0 0 0 0 K 0 K K 0 K 0 0 0 0 0 0 K K 0 K K K k K K K K K K K K Ia 4

K K K K K K 58/ec 0. 065 0.5ec 5 5ec 80 K 0.005ec F ELOCITY ACCELERATION F 58 0.5 0.065 5 80 58 F 98 88 08 569 F 98. 5 7 ELOCITY DECELERATION 0.065 0.065 5 5 80 58 88 7.7. 5 7 POSITION ACCELERATION F 98. 5 7 POSITION DECELERATION 88 7.7. 5 7 IIb 5

88 7.7. 5 7 APPENDI III TYPE SERO θ θ K K θ K θ K θ K K K Inal cnd 0 0 0 0 0 K 0 K 0 K K -------------------------------------------------------------------------------- 0, 0 0, 0 0, 0 K K K K K K K K K K K K K K K K K IIIa 6

7 ec 79 K ec 0. ec 0.005 79 5.8 0.005 0.005 79 5.8 0.005 79 5.8 4905 98 88 88 4905 98 88 5 98 " 88.94 8.45.94 8.45 7 5 98 j j 87. 6.9 7 88 87. 6.94 7 5 98 ELOCITY ACCELERATION F 87. 6.9 7 5 98 F ELOCITY DECELERATION 87. `6.9 7 88 POSITION ACCELERATION 87. 6.9 7 5 98 F POSITION DECELERATION 87. 6.9 7 99 IIIb