MEM Chapter 2. Sensitivity Function Matrices

Similar documents
Robust Control. 8th class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room

Outline. Classical Control. Lecture 1

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

An Internal Stability Example

Stability of CL System

CDS 101/110a: Lecture 10-1 Robust Performance

Digital Control Systems

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

Mech 6091 Flight Control System Course Project. Team Member: Bai, Jing Cui, Yi Wang, Xiaoli

Robust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room

Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010

Classify a transfer function to see which order or ramp it can follow and with which expected error.

MEM 355 Performance Enhancement of Dynamical Systems

Control System Design

Analysis of SISO Control Loops

MEM 355 Performance Enhancement of Dynamical Systems

Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto

Robust Multivariable Control

Lecture 2. FRTN10 Multivariable Control. Automatic Control LTH, 2018

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Robust Performance Example #1

Structured Uncertainty and Robust Performance

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

Module 5: Design of Sampled Data Control Systems Lecture Note 8

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

A Comparative Study on Automatic Flight Control for small UAV

Control Systems I Lecture 10: System Specifications

AFRL MACCCS Review. Adaptive Control of the Generic Hypersonic Vehicle

] [ 200. ] 3 [ 10 4 s. [ ] s + 10 [ P = s [ 10 8 ] 3. s s (s 1)(s 2) series compensator ] 2. s command pre-filter [ 0.

Stability and Robustness 1

H Loop Shaping for Systems with Hard Bounds

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

MAE 143B - Homework 9

6.241 Dynamic Systems and Control

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

Presentation Topic 1: Feedback Control. Copyright 1998 DLMattern

Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Model Uncertainty and Robust Stability for Multivariable Systems

Control Systems I. Lecture 9: The Nyquist condition

Frequency Response Analysis

Systems Analysis and Control

= rad/sec. We can find the last parameter, T, from ωcg new

Intro to Frequency Domain Design

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

ROBUST STABILITY AND PERFORMANCE ANALYSIS OF UNSTABLE PROCESS WITH DEAD TIME USING Mu SYNTHESIS

(a) Find the transfer function of the amplifier. Ans.: G(s) =

x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

FREQUENCY-RESPONSE DESIGN

Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Engraving Machine Example

ON QFT TUNING OF MULTIVARIABLE MU CONTROLLERS 1 ABSTRACT

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Systems Analysis and Control

Robust control of MIMO systems

Richiami di Controlli Automatici

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

Worst-case Simulation With the GTM Design Model

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

Active Control? Contact : Website : Teaching

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

MAE 143B - Homework 9

Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Mechanical Systems Part A: State-Space Systems Lecture AL12

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

An Overview on Robust Control

Wind Turbine Control

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Robust Control 3 The Closed Loop

Dr Ian R. Manchester

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Systems Analysis and Control

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Frequency domain analysis

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

LINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

(Continued on next page)

Maximizing the Closed Loop Asymptotic Decay Rate for the Two-Mass-Spring Control Problem

SEL 382 Controle Robusto Departamento de Engenharia Elétrica USP São Carlos

UNCERTAINTY MODELING VIA FREQUENCY DOMAIN MODEL VALIDATION

FEL3210 Multivariable Feedback Control

9. Two-Degrees-of-Freedom Design

D(s) G(s) A control system design definition

Theory of Robust Control

AA/EE/ME 548: Problem Session Notes #5

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Exercise 1 (A Non-minimum Phase System)

ECE 486 Control Systems

APPLICATIONS FOR ROBOTICS

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]

1.1 Notations We dene X (s) =X T (;s), X T denotes the transpose of X X>()0 a symmetric, positive denite (semidenite) matrix diag [X 1 X ] a block-dia

Robustness Margins for Linear Parameter Varying Systems

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Systems Analysis and Control

Transcription:

Applied Robust Control, Chap 2, 2012 Spring 1 MEM800-007 Chapter 2 Sensitivity Function Matrices r e K u d y G Loop transfer function matrix: L GK Sensitivity function matrix: S ( I L) Complementary Sensitivity function matrix: 1 T L( I L) 1 1 y L( I L) r( I L) d Tr Sd 1 smaller S smaller worst-case disturbance response smaller T better robust stability u K I L rd R r d 1 ( ) ( ) ( ) smaller R smaller worst-case control input

Applied Robust Control, Chap 2, 2012 Spring 2 Physical meaning of H infinity Norm

Applied Robust Control, Chap 2, 2012 Spring 3 Unstructured Norm-bounded Uncertainties K u G I M G y K u G b M a G y b M T a Small Gain Theorem: Assume the nominal closed-loop system, T, is stable, then 1 the uncertain closed-loop system ( I T ) or ( I ) 1 GK is stable if and only if T( j ) 1 ( j ) for all. smaller T( j ) better robust stability M M

Applied Robust Control, Chap 2, 2012 Spring 4 Singular Values and Singular Value Decomposition Maximum singular value: * max ( X ) max ( X X)

Applied Robust Control, Chap 2, 2012 Spring 5

Applied Robust Control, Chap 2, 2012 Spring 6

Applied Robust Control, Chap 2, 2012 Spring 7

Applied Robust Control, Chap 2, 2012 Spring 8

Applied Robust Control, Chap 2, 2012 Spring 9 Example 1: r e K u d y G 2500 GsKs () () ss ( 5)( s50) a) Find the gain and phase margins., ( ), so b) Find the least upper bound of ( j M ) that T( j) 1 ( ) closed-loop system with j robustly stable. and therefore the uncertain ( ) ( ) is M %File applrbstcntrl_3b_bode_sigma %GK=2500/s(s+5)(s+50) num=2500; den=[1 55 250 0]; L=tf(num,den); figure(1) bode(l);

Applied Robust Control, Chap 2, 2012 Spring 10 20 Bode Diagram 10 0 Magnitude (db) -10-20 -30-40 -50-60 -90-135 Phase (deg) -180-225 -270 10 0 10 1 10 2 Frequency (rad/sec)

Applied Robust Control, Chap 2, 2012 Spring 11 %Nyquist plot figure(2) nyquist(l,{10,100}) 0.2 Nyquist Diagram 0.15 0.1 Imaginary Axis 0.05 0-0.05-0.1-0.15-0.2-1 -0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 Real Axis

Applied Robust Control, Chap 2, 2012 Spring 12

Applied Robust Control, Chap 2, 2012 Spring 13 %Complementary function T T = feedback(l,1); % SIGMA frequency response plots figure(3) sigma(t,'g',{.01,100}) 10 Singular Values 0-10 Singular Values (db) -20-30 -40-50 -60 10 0 10 1 10 2 Frequency (rad/sec)

Applied Robust Control, Chap 2, 2012 Spring 14 >> sv=sigma(t,6.25) sv = 1.8323 Find the phase margin based on the singular value plot of T. >> sv=sigma(t,16) sv = 0.2159 Find the gain margin based on the singular value plot of T.

Applied Robust Control, Chap 2, 2012 Spring 15 %Sensitivity function S S=1-T; figure(4) sigma(inv(s),'m',t,'g',l,'r--',{.01,100}) 60 Singular Values 40 20 Singular Values (db) 0-20 -40 Note that -60 10-2 10-1 10 0 10 1 10 2 Frequency (rad/sec) 1 1 ( ) if L 1 S I L L ( ) if L 1 1 T L I L L and therefore we have 1 L( j) S( j) for low frequencies L( j ) T( j ) for high frequencies

Applied Robust Control, Chap 2, 2012 Spring 16 Example 2: r e K u d y G 1 Gs () s 1, K () s 3 a) Find the gain and phase margins. b) Find the least upper bound of M ( j ), ( ), so that T( j) 1 ( ) and therefore the uncertain ( j ) ( ) is closed-loop system with robustly stable. %File 635_3a_bode_sigma %G=1/(s-1), K=3 num=3; den=[1-1]; L=tf(num,den); figure(1) bode(l); %Nyquist plot figure(2) nyquist(l) M

Applied Robust Control, Chap 2, 2012 Spring 17 10 Bode Diagram 0 Magnitude (db) -10-20 -30-90 Phase (deg) -135-180 10-2 10-1 10 0 10 1 10 2 Frequency (rad/sec) Gain crossover frequency = rad/s Phase margin = degree Phase crossover frequency = rad/s Gain margin = db 1.5 Nyquist Diagram 1 0.5 Imaginary Axis 0-0.5-1 -1.5-3 -2.5-2 -1.5-1 -0.5 0 0.5 Real Axis

Applied Robust Control, Chap 2, 2012 Spring 18 %Complementary function T T = feedback(l,1); % SIGMA frequency response plot of T figure(3) sigma(t,'g', {.01,100}) 5 Singular Values 0-5 Singular Values (db) -10-15 -20-25 -30-35 10-2 10-1 10 0 10 1 10 2 Frequency (rad/sec)

Applied Robust Control, Chap 2, 2012 Spring 19 %Sensitivity function S S=1-T; figure(4) sigma(inv(s),'m',t,'g',l,'r--',{.01,100}) 10 Singular Values 5 0 Singular Values (db) -5-10 -15-20 -25-30 -35 10-2 10-1 10 0 10 1 10 2 Frequency (rad/sec)

Applied Robust Control, Chap 2, 2012 Spring 20 Mixed Sensitivity Problem T zw WS 1 WT 3 w W 1 z 1 u G W 3 z 2 K y 1 z WSwW I GK w 1 1 1 ( ) 1 z WTwWGK I GK w 2 3 3 ( )

Applied Robust Control, Chap 2, 2012 Spring 21 Consider the 2-by-2 NASA HiMAT aircraft model: The control variables are elevon and canard actuators ( e and c ). The output variables are angle of attack ( ) and pitch angle ( ). The model has six states, x x x x x x x x x T 1 2 3 4 5 6 e c where x e and x c are the elevator and canard states.

Applied Robust Control, Chap 2, 2012 Spring 22 % filename: applrbstcntrl_4_mixedsensitivity.m % mixsyn H mixed-sensitivity synthesis design on the HiMAT model % Create the NASA Himat model % The state-space matrices for the NASA HiMAT model G(s) ag =[ -2.2567e-02-3.6617e+01-1.8897e+01-3.2090e+01 3.2509e+00-7.6257e-01; 9.2572e-05-1.8997e+00 9.8312e-01-7.2562e-04-1.7080e-01-4.9652e-03; 1.2338e-02 1.1720e+01-2.6316e+00 8.7582e-04-3.1604e+01 2.2396e+01; 0 0 1.0000e+00 0 0 0; 0 0 0 0-3.0000e+01 0; 0 0 0 0 0-3.0000e+01]; bg = [0 0; 0 0; 0 0; 0 0; 30 0; 0 30]; cg = [0 1 0 0 0 0; 0 0 0 1 0 0]; dg = [0 0; 0 0]; G=ss(ag,bg,cg,dg); G.InputName = {'elevon','canard'}; G.OutputName = {'alpha','theta'}; % Set up the performance and robustness bounds W1 & W3 s=zpk('s'); % Laplace variable s MS=2;AS=.03;WS=5; W1=(s/MS+WS)/(s+AS*WS); MT=2;AT=.05;WT=20; W3=(s+WT/MT)/(AT*s+WT); >> W1 >> W3 % Compute the H-infinity mixed-sensitivity optimal sontroller K1 [K1,CL1,GAM1]=mixsyn(G,W1,[],W3); >> GAM1

Applied Robust Control, Chap 2, 2012 Spring 23 >> size(cl1) >> size(k1) % Compute the loop L1, sensitivity S1, and % complementary sensitivity T1: L1=G*K1; I=eye(size(L1)); S1=feedback(I,L1); % S=inv(I+L1); T1=I-S1; >> size(l1) >> size(t1) >> size(s1) figure(1) step(t1,1.5); title('\alpha and \theta command step responses');

Applied Robust Control, Chap 2, 2012 Spring 24 1.5 and command step responses From: In(1) From: In(2) To: Out(1) 1 0.5 Amplitude 0 1.5 To: Out(2) 1 0.5 0 0 0.5 1 1.5 Time (sec) 0 0.5 1 1.5 figure(2) sigma(i+l1,'--',t1,':',l1,'r--',... W1/GAM1,'k--',GAM1/W3,'k-.',{.1,100});grid legend('1/\sigma(s) performance',... '\sigma(t) robustness',... '\sigma(l) loopshape',... '\sigma(w1) performance bound',... '\sigma(1/w3) robustness bound');

Applied Robust Control, Chap 2, 2012 Spring 25 40 30 20 Singular Values 1/(S) performance (T) robustness (L) loopshape (W1) performance bound (1/W3) robustness bound Singular Values (db) 10 0-10 -20-30 10-1 10 0 10 1 10 2 Frequency (rad/sec)