Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

Similar documents
Wavelength Stabilized High-Power Quantum Dot Lasers

Quantum Dot Laser. Johann Peter Reithmaier. Technische Physik Institute of Nanostructure Technologies & Analytics (INA) University of Kassel

Quantum Dot Lasers. Jose Mayen ECE 355

Emission Spectra of the typical DH laser

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

Chapter 5. Semiconductor Laser

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Semiconductor Lasers for Optical Communication

Broadband Quantum-Dot/Dash Lasers

Stimulated Emission Devices: LASERS

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Signal regeneration - optical amplifiers

EE 472 Solutions to some chapter 4 problems

High Power Diode Lasers

Semiconductor Disk Laser on Microchannel Cooler

Photoluminescence characterization of quantum dot laser epitaxy

1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

THz QCL sources based on intracavity difference-frequency mixing

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

InGaAs-AlAsSb quantum cascade lasers

Semiconductor Lasers II

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

1 Semiconductor Quantum Dots for Ultrafast Optoelectronics

Distributed feedback semiconductor lasers

Recent progress on single-mode quantum cascade lasers

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

THREE-dimensional electronic confinement in semiconductor

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

S. Blair February 15,

Quantum Dot Lasers Using High-Q Microdisk Cavities

Introduction to Optoelectronic Device Simulation by Joachim Piprek

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014

Dynamic Properties of Quantum Dot Distributed Feedback Lasers

Optoelectronics ELEC-E3210

Defense Technical Information Center Compilation Part Notice

Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al Ga 0.80 ) In 0.49.

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Investigation of the formation of InAs QD's in a AlGaAs matrix

Saturation and noise properties of quantum-dot optical amplifiers

Study on Quantum Dot Lasers and their advantages

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

High Speed VCSELs With Separated Quantum Wells

Quantum Dots for optical applications

Research Article Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

GaInNAs: A new Material in the Race for Long Wavelength VCSELs. Outline

Electrically Driven Polariton Devices

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

SUPPLEMENTARY INFORMATION

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

High performance THz quantum cascade lasers

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy

Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding

Semiconductor Laser Based on Thermoelectrophotonics

Diode Lasers and Photonic Integrated Circuits

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Nanostrutture a confinamento quantistico elettronico: i quantum dot

High-Brightness Unstable-Resonator Semiconductor Laser Diodes

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

EE 6313 Homework Assignments

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

Nonlinear optics with quantum-engineered intersubband metamaterials

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Microcavity Length Role On The Characteristic Temperature And The Properties Of Quantum Dot Laser

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

New Concept of DPSSL

Lecture 7 Pumping & Popula3on Inversion*

Characteristics of a Designed 1550 nm AlGaInAs/InP MQW VCSEL

Ultra-low threshold current density quantum dot lasers using the dots-in-a-well (DWELL) structure

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Tunable GaN-Based Laser Diode

,

Optical Investigation of the Localization Effect in the Quantum Well Structures

Quantum Optics in Wavelength Scale Structures

Modern Semiconductor Lasers. Isabel Reis

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Nano-electronic Stochastic Logic Gates - Memory Devices - Sensors and Energy Harvester

Physics and characteristics of high performance 1200 nm InGaAs and nm

Engineering Medical Optics BME136/251 Winter 2017

Self-Assembled InAs Quantum Dots

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

Metal Vapour Lasers Use vapourized metal as a gain medium Developed by W. Silfvast (1966) Put metal in a cavity with a heater Vapourize metal, then

Transcription:

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics Johann Peter Reithmaier Technische Physik, University of Würzburg, Germany Quantum Dots: A New Class of Gain Material for Different Application Areas Quantum Dot Formation and Basic Properties Application Examples for Different Wavelength Ranges Summary, Conclusions and Prospects J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 1

Influence of Dimensionality on Gain E c 3D (bulk) E c 2D (QW) E c 0D (Qdot) D(E c ) D(E c ) D(E c ) Photon D(E v ) D(E v ) D(E v ) E v E v E v D(E) ~ E D(E) ~ const D(E) ~ δ(e) Much higher carrier density at transition energy possible J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 2

Carrier Density at Transition Energy E QW E QDs E F E F excited state of same dot ensemble N N low transparency carrier density reduced temperature dependence (T 0 ) homogeneously broadend gain of one dot ensemble J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 3

Size Distribution of Quantum Dots Single Dot Spectroscopy 100 nm 100 nm norm. intensity 200 nm 300 nm reference 1,25 1,30 1,35 1,40 Broad emission spectrum of dot ensemble due to size fluctuations energy [ev] Single PL line due to dot selection J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 4

Distributed Spectral Gain at RT inhomogeneously broadend gain function due to size fluctuations multi-wavelength amplification due to weak overlap between gain functions of different dot ensembles homogeneous linewidth 5-10 mev inhomogeneous linwidth 30-50 mev homogeneously broadend gain of one dot ensemble J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 5

QDot Density of State Function dot wire wel dot wire bulk wel bulk j Enhanced gain at transition wavelength Asada et et al., al., JQE JQE 22, 22, 1915 1915 (1986) Higher material gain reduction of laser threshold QW: 60 A/cm 2 QDot: < 40 A/cm 2 J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 6

Predictions of Special Dot Properties h + e - QW e - h + QDots Reduced diffusion: No diffusion to surfaces Reduced active volume: Low absorption and inversion density Refractive index decoupled from carrier density: No Chirp α = 4π λ dn dg dn dn J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 7

Consequences for Applications Small active volume and high density of states low threshold current density (lasers, SOAs) Discrete energy states low temperature sensitivity of threshold and emission wavelength (DFB lasers with n(t) / g(t) const) Inhomogeneous broadening broad gain bandwidth (ECLs, SOAs, DFB lasers) Symmetric gain function + small active volume small chirp factor (high speed direct modulation, low filamentation in high power lasers) Localized carrier storage by higher order QD states high speed amplification (SOAs, lasers) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 8

QD Formation and Basic Properties 980 nm QDot Material on GaAs 1.3 µm QDot Material on GaAs 1.4-1.8 µm QDot Material on InP J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 9

980 nm QDot Material MBE growth of Ga0.4In0.6As dots on GaAs dot density: 2 1010 cm-2 About 3 times broader gain spectrum due to dot size distribution much larger tuning range for DFB lasers J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 10

980 nm QDot Lasers Substitution of QW in active region by single QD layer Operation temperature > 210 C J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 11 APL APL 74, 74, 2915 2915 (1999)

Gain of 980 nm QD and QW-Laser Inversion condition already achieved at lower carrier densities j tr = 36 A/cm 2 (α i = 2.2 cm -1 ) j th = 54 A/cm 2 (2mm,HR/HR) Integrated gain for single dot layer limited Threshold gain : g th = α i + 1 L ln 1 R R J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 12 1 2 APL APL 77, 77, 1419 1419 (2000)

Control of temperature sensitivity of λ active layer waveguide Γ (%) quantum well 430 nm 2.4 2 dot layers 800 nm 0.36 1 dot layer 430 nm 0.24 1 dot layer 800 nm 0.18 new design 800 nm 0.16 QW: λ/ T = 0.324 nm/k QD (d.l.): λ/ T = 0.274 QD (s.c.): λ/ T = 0.235 QD (w.c.): λ/ T = 0.166 QD (n.d.): λ/ T = 0.138 Γ QW/QD waveguide Lichtwelle QDLs show high temperature stability of emission wavelength (QWL: 0.33 nm/k, QDL: 0.14 nm/k) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 13

Gain of QW vs. QD Layers g mat (E) D(E) f(e,µ) QW µ = 1.24 ev to 1.40 ev QD Reduced blue shift due to high total gain J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 14 After saturation of first transition large blue shift Photonics West, 2002 2002

Growth of 1.3 µm InAs/GaInAs QDs "Dots in a Well"-concept (Liu et al., EL 35, 1163 (1999) / Ustinov et al., APL 74, 2815 (1999)) InAs embedded in GaInAs buffer layers Room temperature emission at 1.3 µm High quantum dot density GaAs 5 nm Ga 1-x In x As 2-3 ML InAs 5 nm Ga 1-x In x As E C Growth rate: r GaAs = 1 µm/h r InAs = 140 to 260 nm/h Growth temperature: T = 510 C J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 15

Growth of 1.3 µm Quantum Dots InAs-Dots on GaAs 3 10 10 cm -2 intensity (a.u.) wavelength (nm) 1.3 1.28 1.26 1.24 T = 20 C 12 14 16 In content of QW (%) InAs-Dots on Ga 0.85 In 0.15 As 1 10 11 cm -2 energy (ev) High dot densities for InAs on GaInAs 35-40 mev line width 60 mev level distance Longer wavelength at higher In content J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 16

1.3 µm Quantum Dot Laser GRINSCH by multiperiod SSL 6 InAs/GaInAs Q-Dot layers with 50 nm GaAs spacers 650 nm cavity width GRINSCH with SSL structure 1,6 µm Al 0.4 Ga 0.6 As cladding layers J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 17 50 nm spacing (40 nm GaAs, 10 GaInAs) lens shape InAs QDots XTEM XTEM performed by by M. M. Schowalter, D. D. Gerthsen, University of of Karlsruhe

1.3 µm Quantum Dot Laser High gain at transition energy already at low current density Fundamental transition saturates and higher order transitions contribute to the gain maximum gain of 17-20 cm -1 (6 dot layers stack) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 18

Uncoated Ridge Waveguide Laser voltage (V) d > 45 % output power per facet (mw) pulsed current (ma) 30 ma threshold current for 800 µm long uncoated laser (6 Q-Dot layers) Laser operation up to 156 C (record value) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 19

Coated Ridge Waveguide Lasers Ridge width: 4 µm output power at front facet (mw) intensity (a.u.) wavelength (µm) Resonator length: 400 µm! Reflectivities: 83 % and 95 % Laser operation on ground state I th = 4.4 ma, η d = 0.21 W/A (record value) Short cavities with high η d possible by HR coatings and very low internal absorption losses (< 1-2 cm -1 ) current (ma) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 20 JJAP JJAP 41, 41, 1158 1158 (2002)

Lasers with improved QD structures Symmetric DWELLs QD growth direction Asymmetric DWELLs QD J th,inf < 120 A/cm 2 (6 QDLs) (< 20 A/cm 2 per QDL) threshold current density (A/cm 2 ) 2000 1500 1000 500 0 J th, = 270.2 A/cm 2 J th, = 118.7 A/cm 2 5 10 15 reciprocal cavity length (1/cm) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 21

Broad Area Laser (L = 1.3 mm) Symmetric DWELLs QD growth direction Asymmetric DWELLs QD intensity per facet (mw) normalized intensity wavelength (nm) sym. DWELL asym. DWELL Half of threshold current About 30% higher slope efficiency current (ma) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 22

Improved T 0 -values at RT Improved T 0 -value due to new QD layer design (from 60 K 130 K) Lower threshold current densities over the whole operation range Emission from fundamental transition Emission wavelengths: 1.275 1.312 µm J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 23

Introduction of p-doping D. Deppe et al. Univ. of Texas Doping enhances population inversion and increases gain at low pumping levels undoped n - doped N d = 10 per QD p - doped N a = 10 per QD Assume: Quasi-equilibrium Ε e Charge neutrality m = 0 0.964 ev Ε h J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 24

p-doped QD Layers (RWG-Laser) D. Deppe et al. Univ. of Texas Further improvement of T 0 -value by p-doping to > 200 K up to 70 C Thershold Current (ma) 40 10 4 Threshold Current versus Temperature For a P-doped 5-QD stack Laser QD Edge Emitter W = 5 µm L c = 970 µm CW, T o = 213 K pulsed, T o = 232 K L c = 650 µm CW, T o = 200 K 260 300 340 380 420 460 Temperature (K) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 25

Epitaxy of InP Based QDs (λ > 1.4 µm) 300 300 nm top view SEM image of InAs quantum dashes (100) InP substrates 200 nm InGaAlAs buffer 5 MLs InAs Irregular shaped quantum dashes Dashes preferentially aligned along the (0-11) direction Dash formation: 2.5-10 MLs J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 26

Wide Emission Wavelength Range Control of emission wavelength by dash layer thickness Nearly symmetric low temperature PL spectra Wide wavelength range: 1.2 1.8 µm Already realized: Laser emission at RT between 1.5 and 1.79 µm J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 27

Threshold and Efficiency of 1.5 µm Lasers Threshold Current Density BA-laser (L = 100 µm) T = 20 C, pulsed Differential Efficiency BA-laser (L = 100 µm) T = 20 C, pulsed Transparency threshold current density: 330 A/cm 2 (< 100 A/cm 2 per dash layer) Internal quantum efficiency: 62% Absorption: 8.5 cm -1 J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 28

Temperature Sensitivity Strong reduction of temperature shift of emission wavelength Reason based on gain saturation: slight dependence on cavity length Temperature shift as low as refractive index change: QD: 0.12 nm/k, QW: 0.53 nm/k J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 29

Examples of Device Applications 980 nm QD pump laser Temperature stable QD-DFB laser 1.3 µm QD-DFB lasers 1.3 µm QD-VCSEL Quantum Dot SOAs J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 30

980 nm High Power QD Laser 2 mm 100 µm broad area laser Record value of 4 W cw output power (HR/AR coating, > 8 MW/cm 2 ) Wall plug efficiency > 50 % at 1 W J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 31 Emission by fundamental mode High temperature stability Reduced wavelength shift EL EL 37, 37, 353 353 (2001)

High Temperature Laser Performance T 0 for QWLs is higher due to SSL-barriers but constant for QD lasers No difference in temperature dependence for constant output power (T 1 ) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 32

Single Mode Emitting QDot Lasers Complex coupled DFB-Laser fabricated by e-beam Wavelength selection by grating period (SMSR = 52 db) I th < 20 ma for all periods ( λ = 33 nm) EL EL 35, 35, 2036 2036 (1999) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 33

Temperature Stable DFB-Laser stable single mode emission no mode hopping single mode operation over 194 K temperature range reason: λ well (T) λ dot (T) quantum film quantum dots 3 times larger bandwidth 2 times lower temperature shift of wavelength J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 34

1.3 µm QD-DFB-Lasers Ridge waveguide lasers with lateral metal gratings defined by e-beam lithography Complex coupled distributed feedback Device dimensions: L = 800 µm, R = 83% / 95 % EL EL 37, 37, 634 634 (2001) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 35

Characteristics of 1.3 µm QD-DFB-Lasers Single mode operation with SMSRs well above 40 db 20 ma threshold current Stable sidemode suppression J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 36

Wavelength Tuning by Grating Period Wavelength controlled by grating period ( λ = 36 nm) Linear wavelength dependence No SMSR degradation over whole tuning range Constant device performance J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 37 JJAP JJAP 41, 41, 1158 1158 (2002)

High Frequency Properties of 1.3 µm Lasers intensity (db) 10 0-10 -20 f 3dB = 5.9 GHz I=40, 130 ma -30 0 2 4 6 8 10 12 odulation frequency (GHz) EL EL 37, 37, 1223 1223 (2001) f r (GHz) 5.0 4.5 4.0 3.5 3.0 2.5 J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 38 f 3dB =7.53GHz 0.50 GHz/ (ma) 8 9 10 11 12 13 I ma Large modulation bandwidth for 800 µm long HR/HR coated device 3dB bandwidth thermally limited

Improved HF-Properties by p-doping D. Deppe et al. Univ. of Texas 6 3 (a) 10 x I th T = 300 K p-doped 5-stacks h ω = 30 mev L = 400 µm Simulated Small Signal Modulation Response P-doped 5-QD stack Laser E = 30 mev Calculated Modulation Response (db) 0-3 6 3 0 (b) 14.6 GHz 10 x I th 50 x I th 50 x I th 33.0 GHz T = 373 K p-doped 5-stacks h ω = 30 mev L = 400 µm -3 0 10 10.7 GHz 24.7 GHz 20 30 Frequency (GHz) 40 J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 39

1.3 µm Quantum Dot VCSEL Laser light InGaAs Quantum Dots Metal contacts 1.75 λ (p)gaas Quantum Dot µ-cavity 1.75 λ (n)gaas DBR Al(Ga)Ox GaAs AlGaAs GaAs Substrate GaAs/Al(Ga)Ox Bragg mirrors with buffer layers for improved stability (rapid thermal annealing) Tapered apertures Cavity design optimized for low optical losses N. Ledentsov (Ioffe) J. Lott (AFIT, USA) D. Bimberg (TUB) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 40 CW output power up to 1 mw 14 % wall plug efficiency Max. diff. eff. > 90%

1.3-µm InAs Quantum-Dot SOAs Cross-sectional view Electrode p-al0.7ga0.3as n-al 0.7Ga 0.3As n-gaas Substrate Sugawara et al. GaAs SCH Electrode Photograph of chip No.1 Input Output Electrode 10-layer InAs quantum dots Surface Cross section 100 nm 100 nm Output [dbm] 20 0-20 -40-60 18dB/25mm ASE 100 nm Signal 1200 1250 1300 1350 Wavelength [nm] J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 41

Pattern-Effect-Free Operation of QD-SOA Sugawara et al. Amplifier gain [db] 15 10 5 0 Power 10Gb/s input 20ps/div. Time 1 ka/cm 2 Linear gain Bulk InGaAsP SOA: -2.0dB 20ps/div. -20-10 0 10 20 Output power [dbm] Quantum-Dot SOA -0.9dB -1.4 db Max. -2.3 db -4.7 db 20ps/div. 20ps/div. 20ps/div. J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 42

Prospects for QD-SOAs and Switches Sugawara et al. Experiments Pattern effect free up to -4.7 db @ 10 Gb/s (λ = 1.3 µm) Wavelength conversion by cross gain modulation @ 10 Gb/s From simulation results expected (λ = 1.55 µm) About 15-dB improvement in output power compared to bulk SOAs High-speed optical switching up to 160 Gb/s J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 43

InP based RWG QDash Laser T = 20 C, cw CW operating ridge waveguide lasers 0.11 W/A per facet (15 mw per facet) 67 ma treshold current 2 mm x 3 µm J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 44

Summary Main advantages of QDot-Lasers: lower inversion carrier density, low temperature sensitivity broad gain spectrum, low chirp, multi-wavelength amplification, high speed Major Application Areas: 980 nm high power lasers (4 W cw from 100 µm facet, 1 W up to 110 C) Ultra-temperature-stable DFB lasers (T op. > 210 C ) High performance 1.3 µm RWG lasers (I th = 4.4 ma, T op. > 150 C) 1.3 µm DFB lasers with wide tuning range (I th = 20 ma, SMSR > 50 db) 1.3 µm QD-VCSEL (P cw 1 mw) Pattern free 10 GBit/s amplification at 1.3 µm by QD-SOAs 1.55 1.8 µm QD-lasers based on InP with broad gain spectrum and very low temperature sensitivity of emission wavelength (dλ/dt = 0.12 nm/k) J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 45

Conclusions and Prospects 980 nm high brightness pump sources: Main advantages: low filamentation and temperature sensitivity Already near to commercialization Open points: demonstration of improved output powers, reliability 1.3 µm edge emitters and VCSELs: Main advantages: GaAs substrate, low threshold, low temperature sensitivity, broad gain spectrum In many device properties superior to existing technologies Edge emitters at commercialization step (e.g. Zhia, Albuquerque) Open points: high modulation speeds (solutions on the way) 1.5 µm InP based edge emitters and SOAs: Main advantages: broad gain spectrum, multi-wavelength amplification, low chirp, low temperature sensitivity of emission wavelength, high speed Device related research just started but fast progress Open points: improvement of material quality, confirmation of properties J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 46

Acknowledgements Research Group at Technische Physik, University of Würzburg: F. Klopf, R. Krebs, St. Deubert (GaAs based QD lasers) R. Schwertberger, D. Gold (InP based QD lasers) S. Parusel, A. Wolf (technicians) M. Kamp, M. Emmerling (lithography group) Financial Support: European Community: IST projects BigBand Ultrabright German Federal Ministry of R&E (BmBF "KomLaser") State Goverment of Bavaria ("Bavarian Research Grant") D. Deppe et al. Univ. of Texas N. Ledentsov (Ioffe) J. Lott (AFIT, USA) D. Bimberg (TUB) Sugawara et al. J.P. Reithmaier, Universität Würzburg, jpr\powerpoint\2002\2002_optimist\optimist, Foil 47