HITRAP Low Energy Diagnostics and Emittance Measurement

Similar documents
The linear Decelerator Facility HITRAP A Status Report

Experiments with heavy, highly charged ions - Status of the HITRAP project

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Development of the UNILAC towards a Megawatt Beam Injector

Development and application of the RFQs for FAIR and GSI Projects

Status of the ESR And Future Options

A high intensity p-linac and the FAIR Project

Bunch Compressor for Intense Proton Beams

A pepper pot emittance device for 8 kev/u light ion beams Marion RIPERT

Proton LINAC for the Frankfurt Neutron Source FRANZ

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

Design of a Low-Energy Chopper System for FRANZ

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Measurement of transverse Emittance

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

LIGHT. ...from laser ion acceleration to future applications. - project overview and lates experimental results -

CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ

Design of a Fast Chopper System for High Intensity Applications

Energy loss measurements of swift ions penetrating hot and dense plasma at the UNILAC

OVERVIEW OF RECENT RFQ PROJECTS *

The SARAF 40 MeV Proton/Deuteron Accelerator

Measurement of Beam Profile

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU

The Super-FRS Project at GSI

Status of the EBIT in the ReA3 reaccelerator at NSCL

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

Chopping High-Intensity Ion Beams at FRANZ

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007

Notes on the HIE-ISOLDE HEBT

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY*

Polarimetry in Hall A

Upgrade of the HIT Injector Linac-Frontend

Heavy ion linac as a high current proton beam injector

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou

Diagnostics at SARAF

Atomic Physics with Stored and Cooled Ions

A new sc cw-linac for Super Heavy Element Research. S. Jacke LINAC department, GSI Helmholtz-Institut Mainz (HIM) Germany

UNILAC Status and Upgrade Plans

Institute of Modern Physics, China Academy of Science, Lanzhou , China

COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC

II) Experimental Design

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

"SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR"

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS

Preliminary design of proton and ion linacs for SPPC Injector

arxiv: v1 [physics.acc-ph] 20 Jun 2013

Laser Based Diagnostics for Measuring H - Beam Parameters

Measurement and Simulation of Transverse Emittance Growth along the Alvarez DTL of the GSI UNILAC

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

Injector Experimental Progress

The ISIS Penning H - SPS and Diagnostic Developments at RAL

Ion Cooler for TAMU- TRAP Facility. Natalie Foley, Hillsdale College Advisors: Dr. Dan Melconian, Dr. Praveen Shidling

Linac Beam Dynamics Code Benchmarking

Undulator Commissioning Spectrometer for the European XFEL

Balmer- and L-shell series of highly charged uranium in the experimental storage ring

The UCLA/LLNL Inverse Compton Scattering Experiment: PLEIADES

X-TOD Update. Facility Advisory Committee Photon Breakout Session. October 30, 2007

Research Article Emittance Measurement for Beamline Extension at the PET Cyclotron

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Proton LINAC for the Frankfurt Neutron Source FRANZ

Møller Polarimetry in Hall A and Beyond

Laser Spectroscopy of Highly Charged Ions for a Test of QED ( and SRT)

Diagnostic Systems for High Brightness Electron Injectors

Commissioning of the SNS Beam Instrumentation

Introduction to Beam Diagnostics

Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Currents

LCLS Injector Prototyping at the GTF

DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES*

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

Development of Large Scale Optimization Tools for Beam Tracking Codes

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues

HIGH-ENERGY HEAVY-ION ACCELERATORS

Diagnostics Requirements for the ARIEL Low Energy Beam Transport

1. Introduction (beam power, beam quality - tutorial) 2. Point Study: Radiation Pressure Acceleration (Yan et al.) 3. Beam chromatic emittance and

Overview of the EURISOL post-accelerator design and studies

Calculation of matched beams under space-charge conditions

, 2003, A dedicated proton accelerator for 1 p-physics at the future GSI Demands facilities for Beam Diagnostics

Oriented single crystal photocathodes: A route to high-quality electron pulses. W. Andreas Schroeder. Benjamin L. Rickman and Tuo Li

Inverse Compton Scattering Sources from Soft X-rays to γ-rays

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

Experimental study of nonlinear laser-beam Thomson scattering

Plasma Traps for Space-Charge Studies : Status and Perspectives. Hiromi Okamoto (Hiroshima Univ.)

Heavy ion fusion energy program in Russia

arxiv: v2 [physics.acc-ph] 21 Jun 2017

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

The FAIR Accelerator Facility

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

LCLS Undulator Parameter Workshop

slhc-project-report-0029

Ingo Hofmann, GSI Darmstadt Accelerator Physics Seminar, DESY, April 23, 2007

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

Transcription:

HITRAP Low Energy Diagnostics and Emittance Measurement Jochen Pfister 1, Oliver Kester 2, Ulrich Ratzinger 1, Gleb Vorobjev 3 1 Institut für Angewandte Physik, JW Goethe-University Frankfurt, Germany 2 NCSL/MSU, East Lansing, USA 3 GSI, Darmstadt, Germany Workshop on "Low Current, low Energy Beam Diagnostics" Großsachsen, November 24, 2009 J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 1

Outline The HITRAP project at GSI Existing beam diagnostics for emittance measurements and particle detection Measurements and results Outlook J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 2

HITRAP @ ESR ion sources UNILAC 11.4 MeV/u U 73+ 4-400 MeV/u U 92+ ESR HITRAP LINAC ~20 m long SIS 18 N up to 1 GeV/u U 92+ J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 3

HITRAP overview 7m to experiments DDB section IH section & MEBT LEBT & Cooler trap VBL RFQ section 4MeV/u 0.5MeV/u 6keV/u 5keV/q J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 4

Experiments @ HITRAP Experiments based on Penning traps Laser spectroscopy g-factor measurements of the bound electron Mass measurements of extreme accuracy Polarization of radionuclides Decay spectroscopy of highly-charged radionuclides Collision experiments: Collisions at very low velocities Surface studies and hollow-atom spectroscopy X-ray spectroscopy J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 5

Low energy/low intensity pepperpot device Pepperpot Diamond Energy Analysis stand-alone device multi diagnostic Pepperpot data: hole diameter: 0,1mm (0,1mm W foil) hole spacing: 1mm drift distance: 31,8mm sandwiched between Al frame and 2mm Cu plate J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 6

Low energy/low intensity pepperpot device Pepperpot Diamond Energy Analysis stand-alone device multi diagnostic MCP data: diameter: 40mm channel diameter: 12µm gain: 10 4 scintillator: P-43 (λ max =545nm) afterglow (10%): 1ms camera: resolution: 1392x1040pixels ~40µm spatial resolution lens: fixed focus f=50mm, high quality with narrow band pass filter with λ max @ 545nm J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 7

Low energy/low intensity pepper pot device Pepperpot Diamond Energy Analysis J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 8

Diamond detector Pepperpot Diamond Energy Analysis 4 different seperate diamond layers: poly-crystalline CVD 10/15µm single-crystal CVD 480/380µm poly-crystalline CVD 15µm poly-crystalline CVD 600µm (diameter: 3mm each) J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 9

New Energy Analyzer Pepperpot Diamond Energy Analysis 0,3mm slit 0,5T permanent magnet MCP (chevron type) SONY CCD camera - 1034x779px - 4.65x4.65 µm pixel size mirror IH-structure beam dipole 500keV/u >1MeV/u MCP J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 10

New Energy Analyzer Pepperpot Diamond Energy Analysis camera viewport MCP dipole J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 11

New Energy Analyzer Pepperpot Diamond Energy Analysis Homogeneous field on magnet axis measured with hall probe Drift distance between magnetic field edge and MCP: 95mm Redidual field on axis if magnet out: <1 gauss J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 12

Bunch shape measurement macro bunch: 1-3µs from ESR or micro-structured: 108MHz (measured) / 370ps (not resolved) 4MeV/u J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 13

Diamond detector Diamond detector: beam is bunched! 9,2 ns J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 14

Phase probes Bunched beam detected with phase probe in front of IH-structure phase probes J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 15

IH commissioning in 2008/2009 ε 90% = 9,2 π mm mrad 4MeV/u 0.5MeV/u J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 16

IH commissioning 2008/2009 3-gradient method Pepperpot no signal of 0.5MeV/u beam on either YAG scintillator or P-43 for 3-gradient method or pepperpot measurement 3-gradient method via profile measurements using diamond detector (vertical direction only!) quad slit IH-structure beam steerer >1MeV/u 500keV/u J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 17

IH commissioning 2008/2009 3-gradient method Pepperpot varying gradient of quadrupole doublett 5 behind IH structure gradient: 51,2T/m 57,6T/m 64T/m J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 18

0.5MeV/u emittance 3-gradient method Pepperpot independent evaluation in MS EXCEL and MATLAB shows exactly same result design value at this point: 9,2 π mm mrad ε y,kv = 9,3 π mm mrad α = 1,15 β = 7,80 mm/mrad γ = 0,30 mrad/mm 0,002 0,0015 0,001 0,0005 Y' in [rad] 0-0,01-0,008-0,006-0,004-0,002 0 0,002 0,004 0,006 0,008 0,01-0,0005-0,001-0,0015-0,002 Y in [m] J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 19

First test of MCP-Pepperpot-Emittance Meter 3-gradient method Pepperpot Measurement behind RFQ (LEBT) Energy mixture: 4MeV/u > E > 6keV/u J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 20

Outlook MCP-based energy analysis tests ongoing tune IH-structure based on energy distribution measurements (1)(spring 2010) energy analysis behind RFQ (2) and low energy emittance measurements (3) 1 2 3 4MeV/u 0.5MeV/u 6keV/u J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 21

Thank you for your attention! and thanks to: C. Andre, P. Forck, T. Hofmann, D. Liakin, F. Herfurth, O. Kester, G. Vorobjev U. Ratzinger and everybody that I forgot J. Pfister, Institut für Angewandte Physik, Johann Wolfgang Goethe-University Frankfurt 22