VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

Similar documents
EKSAMEN / EXAMINATION Q1 Q2 Q3 Q4 Q5 TOTAL. 2. No pencil work or any work in red ink will be marked.

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: SEL NR / CELL NO:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

November 2005 TYD/TIME: 90 min PUNTE / MARKS: 35 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE:

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me/Ms R Möller

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

SEMESTERTOETS 1 / SEMESTER TEST 1

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

WTW 263 NUMERIESE METODES / NUMERICAL METHODS

Punte: Intern Marks: Internal WTW 168 : CALCULUS. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me / Ms R Möller

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: TELEFOON / TELEPHONE:

[1a] 1, 3 [1b] 1, 0 [1c] 1, 3 en / and 1, 5 [1d] 1, 0 en / and 1, 0 [1e] Geen van hierdie / None of these

CAMI EDUCATION. Graad 12 Vraestel I : Rekord eksamen Punte. Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word:

WTW 161 : ALGEBRA. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Dr F Theron

Kwadratiese rye - Graad 11

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

MATHEMATICS GRADE 10 TASK 1 INVESTIGATION Marks: 55

Graad 12: Rye en Reekse

HOëRSKOOL STRAND WISKUNDE NOVEMBER 2016 GRAAD 11 VRAESTEL 2

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

3. (d) None of these / Geen van hierdie

Examination Copyright reserved. Eksamen Kopiereg voorbehou. Module EBN122 Elektrisiteit en Elektronika 13 November 2009

UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

LIMPOPO DEPARTEMENT VAN ONDERWYS LIMPOPO DEPARTMENT OF EDUCATION- LAERSKOOL WARMBAD

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

GRADE 9 - FINAL ROUND QUESTIONS GRAAD 9 - FINALE RONDTE VRAE

a b

Eksamen Invulvraestel Kopiereg voorbehou. Exam Fill in paper Copyright reserved. Linear Systems ELI November 2010

Funksies en Verwantskappe

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT NOVEMBER 2018 TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

Winter Examination Copyright reserved. Wintereksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2004

NATIONAL SENIOR CERTIFICATE GRADE 10 GRAAD 10

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

Question 1. The van der Waals equation of state is given by the equation: a

TW 214 TOETS 2 - VOORBEREIDING 2018 TEST 2 - PREPARATION

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

Hoofstuk 29 Magnetiese Velde a.g.v Elektriese Strome

Semester Test 1 Semestertoets 1 FSK March 2011 / 16 Maart Time 2½ hours Max. Total 85 Marks Max Tyd 2½ ure Maks. Totaal 85 punte Maks

DEPARTEMENT SIVIELE EN BIOSISTEEM-INGENIEURSWESE DEPARTMENT OF CIVIL AND BIOSYSTEMS ENGINEERING MEGANIKA SWK 122 EKSAMEN MECHANICS SWK 122 EXAMINATION

GRAAD 11 NOVEMBER 2012 WISKUNDIGE GELETTERDHEID V1 MEMORANDUM

GRAAD 12 SEPTEMBER 2012 WISKUNDE V3 MEMORANDUM

NASIONALE SENIOR SERTIFIKAAT GRAAD 10

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2015 MATHEMATICS P1/WISKUNDE V1 MEMORANDUM

UNIVERSITY OF PRETORIA DEPT SlVlELE INGENIEURSWESE / DEPT OF CIVIL ENGINEERING

+ + SEPTEMBER 2016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM

NATIONAL SENIOR CERTIFICATE GRADE /GRAAD10

NATIONAL SENIOR CERTIFICATE EXAMINATION MATHEMATICS JUNE EXAMINATION GRADE 10 PAPER

Semester Test 1. Semestertoets 1. Module EIR221 Elektriese Ingenieurswese 20 Augustus Module EIR221 Electrical Engineering 20 August 2010

CMY 127 EKSAMEN / EXAMINATION

Studentenommer: Student number: Volpunte: Full marks: 160 Open / closed book: Oopboek / toeboek: 21 Punt: Mark: BELANGRIK- IMPORTANT

CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2

NATIONAL SENIOR CERTIFICATE GRADE 10 MATHEMATICS P3 PREPARATORY EXAMINATION 2008 NOVEMBER 2008

KOPIEREG VOORBEHOU / COPYRIGHT RESERVED

OEFENVRAESTEL VRAESTEL 1

Voorletters en Van Initials and Surname Studente nommer Student number Datum / Date

Funksies en grafieke - Graad 10 *

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

GRAAD 12 SEPTEMBER 2018 WISKUNDE V1

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

GRADE 9 - FIRST ROUND QUESTIONS GRAAD 9 - EERSTE RONDTE VRAE

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 JUNE/JUNIE 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

! 1. Gegee / Given! 1. f#x$dx! 12 en / and!4. f#x$dx is. Die waarde van. f#x$dx is / The value of!1. 1 a " 9 1 b 9 1 c 3 1 d 15.

Huiswerk Hoofstuk 23 Chapter 23 Homework

Question / Vraag 1: [12]

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10


Initials & Surname / Voorletters & Van :...

Universiteit Stellenbosch / Stellenbosch University Toegepaste Wiskunde / Applied Mathematics B252 Assessering 1 / Assessment 1:

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

Module ELX May 2009

DR. J ROSSOUW Pro In9

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

Cody Patterson en Kirby C. Smith Departement Wiskunde, Texas A&M Universiteit, College Station, Texas 77843, VSA

CHM 215 Eksamen / Examination

MATHEMATICS PAPER 1. GRADE 12 PRELIMINARY EXAMINATION 04 September :00 WISKUNDE VRAESTEL 1. GRAAD 12-REKORDEKSAMEN 04 September :00

NATIONAL SENIOR CERTIFICATE/NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

NATIONAL SENIOR CERTIFICATE EXAMINATION MATHEMATICS JUNE EXAMINATION GRADE 11 PAPER 1

Universiteit van Pretoria

KLASTOETS GRAAD 11. FISIESE WETENSKAPPE: CHEMIE Toets 6: Chemiese verandering

Die effek van veelvuldige lynverwydering op die onafhanklikheidsgetal van n asikliese grafiek

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT MATHEMATICS P2/WISKUNDE V2 GRADE/GRAAD 11 NOVEMBER 2016

UNIVERSITY OF PRETORIA. Department of Chemistry. CMY 284: Organic Chemistry / Organiese Chemie FINAL EXAMINATION / FINALE EKSAMEN

GRAAD 12 SEPTEMBER 2015 WISKUNDE V2

GRADE/GRAAD 11 NOVEMBER 2018 TECHNICAL SCIENCES P1 TEGNIESE WETENSKAPPE V1 MARKING GUIDELINE/NASIENRIGLYN

Hierdie vraestel is deel van InternetLearning se ExamKit pakket.

17 Teorie van Berekening

Transcription:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 220 - ANALISE / ANALYSIS EKSAMEN / EXAM 12 November 2012 TYD/TIME: 120 min PUNTE / MARKS: 40 Interne eksaminatore / Internal examiners: Prof I Broere, Dr AJ van Zyl Eksterne eksaminator / External examiner: Prof NF J van Rensburg VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD: Totaal / Total 1. The paper consists of pages 1 to 7 (questions 1 to 5). Check whether your paper is complete. / Die vraestel bestaan uit bladsye 1 tot 7 (vrae 1 tot 5). Kontroleer of jou vraestel volledig is. 2. If you need more than the available space for an answer, use the facing page and indicate it clearly. / As jy meer as die beskikbare ruimte vir n antwoord nodig het, gebruik dan ook die teenblad en dui dit duidelik aan. 3. Only non-programmable calculators may be used. / Slegs nie-programmeerbare sakrekenaars mag gebruik word.

Question 1 Vraag 1 (a) Let S be a subset of the set R of real numbers. Define the following concepts: / Laat S n deelversameling van die versameling R van reële getalle wees. Definieer die volgende begrippe: (i) The set S is bounded above. / Die versameling S is van bo begrens. (ii) The number s is the supremum of S (written as sups) / Die getal s is die supremum van S (geskryf as sups). (b) Remember the Completeness Axiom which states that every bounded non-empty set of real numbers has a supremum. Now use it to prove the Archimedean Postulate which claims that the set N of natural numbers is not bounded above. / Onthou dat die Volledigheidsaksioma ons verseker dat daar vir elke begrensde nie-leë versameling reële getalle n supremum is. Gebruik nou hierdie feit om die Archimediese Postulaat te bewys wat sê dat die versameling N van natuurlike getalle nie van bo begrens is nie. 1

(c) Is the set { 4+n : n N} bounded above? Motivate your answer. / n 2 Is die versameling { 4+n : n N} van bo begrens? Motiveer jou antwoord. n 2 Question 2 Vraag 2 (a) Define what it means that the sequence (a n ) is convergent. / Definieer wat dit beteken dat die ry (a n ) konvergent is. (b) Use known results on the convergence of sequences to prove that the sequence (a n ) is a null sequence, with / Gebruik bekende resultate oor die konvergensie van rye om te bewys dat (a n ) n nulry is, met a n = 3n + 17n 5. n! (c) Define what it means to say that a sequence (a n ) is monotone / Definieer wat dit beteken om te sê dat die ry (a n ) monotoon is. (d) Give an example of a sequence which is monotone but not convergent / Gee n voorbeeld van n ry wat monotoon is maar nie konvergent is nie. 2

(e) Let (a n ) be a bounded sequence of real numbers and define, for every N N, the set S N = {a n : n > N}. Now prove the following part of the Bolzano-Weierstrass Theorem: If every S N has a maximum element, then (a n ) has a convergent subsequence. / Laat (a n ) n begrensde ry reële getalle wees en definieer, vir elke N N, die versameling S N = {a n : n > N}. Bewys nou die volgende deel van die Bolzano-Weierstrass Stelling: As elke S N n maksimale element het, dan het (a n ) n konvergente deelry. Question 3 Vraag 3 (a) Remember that every continuous function on an interval of the form [a, b] is bounded on [a, b]. Use this result to prove that every continuous function on [a, b] attains a minimum value somewhere on [a, b]. / Onthou dat elke kontinue funksie op n interval van die vorm [a, b] begrens is op [a, b]. Gebruik hierdie resultaat om te bewys dat elke kontinue funksie op [a, b] n minimumwaarde iewers op [a, b] bereik. [4] 3

(b) Now give an example of a function w : [0, 1] R which is not bounded on [0, 1] and which does not attain a minimum value somewhere on [0, 1]. / Gee nou n voorbeeld van n funksie w : [0, 1] R wat nie begrens op [0, 1] is nie en wat nie n minimumwaarde iewers op [0, 1] bereik nie. (c) Suppose that f is a continuous function on [a, b] and let K = f(x 1 ) + f(x 2 ) for some (fixed) values x 1 and x 2 with a < x 1 < x 2 < b. Use the Intermediate Value Property to prove that there exists a real number c in (a, b) such that f(c) = K. / Veronderstel f is n kontinue funksie op [a, b] 2 en laat K = f(x 1 ) + f(x 2 ) vir twee (vaste) waardes x 1 en x 2 met a < x 1 < x 2 < b. Gebruik die Tussenwaardestelling om te bewys dat daar n reële getal c in (a, b) is só dat f(c) = K. 2 4

Question 4 Vraag 4 (a) Use the concepts of partition P, lower sum L(P ) and upper sum U(P ) to define what it means for a bounded function f to be Riemann-integrable on the interval [a, b]. / Gebruik die begrippe van partisie P, laersom L(P ) en bosom U(P ) om te definieer wat dit beteken vir n begrensde funksie f om Riemann-integreerbaar op die interval [a, b] te wees. (b) Formulate Riemann s condition that relates Riemann integrability to the difference between upper and lower sums. / Formuleer die Riemannvereiste wat Riemann integreerbaarheid in verband bring met die verskil tussen bo- en laersomme. (c) Prove that if f is a bounded decreasing function on the interval [a, b], then f is Riemann integrable on [a, b]. / Bewys dat as f n begrensde dalende funksie is op die interval [a, b], dan is f Riemann integreerbaar op [a, b]. 5

(d) Recall the following property of Riemann sums: If f is Riemann integrable on [a, b] and (P n ) is any sequence of partitions with corresponding maximum subinterval lengths (h n ) and corresponding sequence of sample point sets (Q n ), then the sequence of Riemann sums (S(P n, Q n )) converges to the b a f(x)dx if (h n) converges to zero as n. / Onthou die volgende eienskap van Riemannsomme: As f Riemann integreerbaar is op [a, b] en (P n ) is enige ry partisies met ooreenstemmende maksimum deelintervallengtes (h n ) en ooreenstemmende ry versamelings van keusepunte (evaluasiepunte) (Q n ), dan sal die ry Riemannsomme konvergeer na b a f(x)dx as (h n) neig na nul soos n. Use this, or another method, to prove that if f(x) g(x) on [a, b], then / Gebruik hierdie, of n ander metode, om te bewys dat as f(x) g(x) op [a, b], dan sal b a f(x)dx b a g(x)dx. Question 5 Vraag 5 (a) Define the n th partial sum of a series and use this definition to state what it means for the series r=1 a r to be convergent. / Definieer die n de parsiële som van n reeks en gebruik die definisie om te beskryf wat dit beteken vir die reeks r=1 a r om te konvergeer. 6

(b) Prove the following part of the Second Comparison Test. Let r=1 a r and r=1 b r be positiveterm series such that / Bewys die volgende deel van die Tweede Vergelykingstoets. Laat r=1 a r en r=1 b r positiewe-term reekse wees waarvoor a n lim = L 0. n b n Suppose that r=1 b r converges. Prove that r=1 a r converges. / Veronderstel dat r=1 b r konvergeer. Bewys dat r=1 a r konvergeer. (c) Determine all values of the real numbers k and p for which Bepaal al die waardes van die reële getalle k en p waarvoor r=1 r=1 1 r p k is a convergent series. n konvergente reeks is. 1 r p k 7