The Route to Better Catalysts: From Surface Science to Nanotechnology

Similar documents
Thermally Stable Pt-Mesoporous Silica Core-Shell Nanocatalysts. for High Temperature Reactions

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery

Permeable Silica Shell through Surface-Protected Etching

Surface Chemistry of Copper Precursors

Special Properties of Au Nanoparticles

Supporting Information

* Corresponding authors:

The Curious Case of Au Nanoparticles

Supplementary Information for

Supporting Information. Sol gel Coating of Inorganic Nanostructures with Resorcinol Formaldehyde Resin

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates.

Supports, Zeolites, Mesoporous Materials - Chapter 9

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes

Surface Chemistry of Copper Precursors in Connection with Atomic Layer Deposition (ALD) Processes

Electrochemically Synthesized Multi-block

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Electronic Supplementary Information

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

Catalysis Communications

Supporting Information. Oxidation Catalyst. Jingqi Guan, Chunmei Ding, Ruotian Chen, Baokun Huang, Xianwen Zhang, Fengtao

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Chapter - 9 CORE-SHELL NANOPARTICLES

Supporting Information

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Shape control and formation of tin oxide particles in organic medium

Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1

Supplementary Information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

Au-C Au-Au. g(r) r/a. Supplementary Figures

Strategies to Synthesize Supported Bimetallic Catalysts

METHANOL OXIDATION OVER AU/ γ -AL 2 O 3 CATALYSTS

Sustainable Li/Na-Ion Batteries

Supplemental Information. Lightweight Metallic MgB 2 Mediates. Polysulfide Redox and Promises High- Energy-Density Lithium-Sulfur Batteries

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Yali Liu, Pengfei Zhang, Junmin Liu, Tao Wang, Qisheng Huo, Li Yang, Lei. Sun,*, Zhen-An Qiao,*, and Sheng Dai *, ASSOCIATED CONTENT

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Assembled Hollow Metal Oxide Nanostructures for Water Treatment

Supplementary Information

ORGANIC CHEMISTRY- 1

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

NaTa0 3. /MCM-48 composites for photocatalytic conversion of organic molecules. Journal of Physics: Conference Series.

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Nanotechnology for the Environment: Challenges, Risks and Research Directions

Prediction and accelerated laboratory discovery of heterogeneous catalysts

Metal-free and Solvent-free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid

Homogeneous vs Heterogeneous Catalysts

Supplementary Figures

BAE 820 Physical Principles of Environmental Systems

Organometallic Catalysis

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

RKCL5155 PREPARATION AND EVALUATION OF AMMONIA DECOMPOSITION CATALYSTS BY HIGH-THROUGHPUT TECHNIQUE

SUPPLEMENTARY INFORMATION

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Supporting Information

Supporting Information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Hybrid Semiconductor-Metal Nanorods as Photocatalysts

Supporting Information

Design of a new family of catalytic support based on thiol containing plasma polymer films

H Organometallic Catalysis in Industry

Supporting Information for:

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

Transition State for Alkyl Group Hydrogenation on Pt(111)

CHEM 203. Topics Discussed on Oct. 16

Nanostructured Catalysts. Abhaya K. Datye University of New Mexico

Supporting Information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Methanol Usage in Toluene Methylation over Pt Modified ZSM-5 Catalyst: Effect of. Total Pressure and Carrier Gas. Supporting Information

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

SILP (Supported Ionic Liquid Phase) catalysis in Gas-Phase Hydroformylation and Carbonylation

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Rattle-Type Silica Colloidal Particles Prepared by a Surface- Protected Etching Process

Size-selected Metal Cluster Deposition on Oxide Surfaces: Impact Dynamics and Supported Cluster Chemistry

The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle

Supporting Information

Interface MD Application

Supplementary data Methanolysis of Ammonia Borane by Shape-Controlled Mesoporous Copper Nanostructures for Hydrogen Generation

Electronic supplementary information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

Magnetite decorated graphite nanoplatelets as cost effective CO 2 adsorbent

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

Top down and bottom up fabrication

Electronic Supplementary Information

A Novel Electroless Method for the Deposition of Single-Crystalline Platinum Nanoparticle Films On

Transition Metal Chemistry

Electronic Supplementary Information

Supporting information. Enhanced photocatalytic degradation of methylene blue and adsorption of

Electronic Supplementary Information. Alcohols

Structural and Catalytic Investigation of Active-Site Isolation in Pd-Ga Intermetallic Compounds

Supporting information

Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions

Transcription:

The Route to Better Catalysts: From Surface Science to Nanotechnology by University of California Riverside, CA 92521, USA Phone: 1 (951) 827-5498 Fax: 1 (951) 827-3962 Email: zaera@ucr.edu http://www.zaera.chem.ucr.edu aldor Topsøe Catalysis Forum Munkerupgaard, Denmark August 27, 2015 1

Introduction Key Issues in Catalysis Selectivity Stability G T, Gases Reactant Product 1 Product 2 A selective process: Consumes less reactants Avoids separation problems Produces less polluting byproducts F. Zaera, J. Phys. Chem. B, 106(16), 4043-4052 (2002). F. Zaera, Catal. Lett., 142(5), 501-516 (2012). Sintering: Reduces surface area modifies surface structure Requires priodic catalyst recycling F. Zaera, Chem. Soc. Rev., 42(7), 2746-2762 (2013). F. Zaera, ChemSusChem, 6(10), 1797-1820 (2013). 2

Introduction Experimental Approach Surface Science with Model Systems Nanotechnology to Prepare Real Catalysts 1 nm Well-defined samples Controlled environments Multiple techniques F. Zaera, Prog. Surf. Sci., 69(1-3), 1-98 (2001). F. Zaera, Int. Rev. Phys. Chem., 21(3), 433-471 (2002). F. Zaera, J. Phys. Chem. Lett., 1(3), 621-627 (2010). 3

Outline 1. Surface Science of Olefin ydrogenation 2. Shape Selectivity A B 3. Catalyst Nano-Architectures 4

Outline 1. Surface Science of Olefin ydrogenation 2. Shape Selectivity 3. Catalyst Nano-Architectures 5

Surface Chemistry of Olefin Conversion ydrogenation, Isomerization, and -D Exchange 3 C C C butane C 3 ydrogenation 3 C C C C 3 2-butyl (ads) C=C 1-butene C 2 5 Double Bond Migration 3 C C 3 C=C cis-2-butene Cis-Trans Isomerization 3 C C=C C 3 trans-2-butene oriuti-polanyi mechanism. Does not account for: effect of coadsorbed, carbonaceous layers, stereoselectivity. M. Polanyi, J. oriuti, Trans. Faraday Soc., 30, 1164-1172 (1934). F. Zaera, Catal. Lett., 91(1-2), 1-10 (2003). 6

Surface Chemistry of Olefin Conversion ydrogenation under UV: TPD Olefin hydrogenation and -D Exchange easily detected by temperature programmed desorption (TPD). Not catalytic. F. Zaera, Langmuir, 12(1), 88-94 (1996). 7

Surface Chemistry of Olefin Conversion ydrogenation under UV: Molecular Beam Ethylene can be hydrogenated with 2 -rich molecular beams, but not catalytically. F. Zaera, T. V. W. Janssens and. Öfner, Surf. Sci., 368(1-3), 371-376 (1996).. Öfner and F. Zaera, J. Phys. Chem. B, 101(3), 396-408 (1997). 8

Surface Chemistry of Olefin Conversion Model of Working Catalyst Surface Ethylene ydrogenation Ethylidyne -Ethylene Olefin hydrogenation takes place not on clean metals but in the presence of a carbonaceous layer (alkylidynes). F. Zaera, Isr. J. Chem., 38, 293-311 (1998). F. Zaera, Catal. Lett., 91(1-2), 1-10 (2003). 9

Surface Chemistry of Olefin Conversion RAIRS Detection of Alkylidynes In Situ C C s (C 3 ) Ethylidyne (ads) Ethylidyne is present on the surface during ethylene hydrogenation. A. Tillekartne, J. P. Simonovis, M. F. López Fagúndez, M. Ebrahimi, F. Zaera, ACS Catal. 2, 2259-2268 (2012). 10

Surface Chemistry of Olefin Conversion Kinetics of ydrogenation and -D Exchange Catalysis Fast and extensive ethylene hydrogenation and -D exchange catalysis in the presence of the alkylidyne surface layer. A. Tillekartne, J. P. Simonovis, M. F. López Fagúndez, M. Ebrahimi, F. Zaera, ACS Catal. 2, 2259-2268 (2012). 11

Surface Chemistry of Olefin Conversion Intermediate ydrogenation Regime Log[P/Torr] -10-8 -6-4 -2 0 2 4 Log[Impinging Rate/ML s -1 ] -4-2 0 2 4 6 8 10 UV Non catalytic Rate ( -C 2 4 ) 1 On clean Pt Pressure Gap (???) Atmospheric P Catalytic Rate P(C 2 4 ) 0 On alkylidyne/pt TOF ~ 1-10??? 0-2 -4-6 -8 Log[Reaction Probability] F. Zaera, Phys. Chem. Chem. Phys., 29, 11988-12003 (2013). 12

Surface Chemistry of Olefin Conversion igh-flux Molecular Beam Kinetics Indeed, reaction probabilities are high (~70%) in the intermediate pressure range. M. Ebrahimi, J. P. Simonovis, F. Zaera, J. Phys. Chem. Lett., 5, 2121-2125 (2014). 13

Surface Chemistry of Olefin Conversion Carbonaceous Layer at igh TOFs Less surface alkylidyne at the high 2 :C ratios that display high TOFs: Olefin hydrogenation rate may be limited by carbonaceous layer. M. Ebrahimi, J. P. Simonovis, F. Zaera, J. Phys. Chem. Lett., 5, 2121-2125 (2014). 14

Surface Chemistry of Olefin Conversion ydrogenation Rate vs. Nature of Alkylidyne Olefin hydrogenation rate may depend on the nature of the carbonaceous deposits present on the surface. A. Tillekartne, J. P. Simonovis, F. Zaera (2015). 15

Surface Chemistry of Olefin Conversion ydrogenation vs. -D Exchange Switchover in -D exchange TOF End of C 2 4 ydrogenation -D exchange used to evaluate 2 ads as possible rls. Slower under reaction conditions, alkylidyne vs. clean Pt. Switchover in -D exchange TOF at intermediate conversion. J. P. Simonovis, F. Zaera (2015). 16

Outline 1. Surface Science of Olefin ydrogenation 2. Shape Selectivity 3. Catalyst Nano-Architectures 17

Shape Selectivity Stereoselectivity of Cis-Trans Isomerization 3 C C 3 C=C cis-2-butene Isomerization depends on stereoselectivity of - elimination step from the alkyl intermediate. 3 C C=C C 3 trans-2-butene C 3 C 3 3 C C 3 3 C C 3 C C 3 C C C C 3 3 C C C C 3 cis-2-butene (ads) 2-butyl (ads) trans-2-butene (ads) I. Lee and F. Zaera, J. Am. Chem. Soc., 127, 12174-12175 (2005). I. Lee, F. Zaera, Top. Catal., 56(15-17), 1284-1298 (2013). F. Zaera, Phys. Chem. Chem. Phys., 15(29), 11988-12003 (2013). 18

Shape Selectivity Trans-to-Cis Conversion on Pt(111): IR Evidence 998, 1200, 1376, 1460 cm -1 peaks indicate cis-2-butene. Trans-to-cis isomerization. I. Lee and F. Zaera, J. Am. Chem. Soc., 127, 12174-12175 (2005). I. Lee, F. Zaera, J. Phys. Chem. C, 111, 10062-10072 (2007). 19

Shape Selectivity Preparation of Shape-Selected Pt Nanoparticles Pt(111) Tetrahedral Pt Particles (111) facets Pt(111) 1 nm Pt(100) Cubic Pt Particles (100) facets 1 nm T. S. Ahmadi, Z. L. Wang, T. C. Green, A. anglein, M. A. El-Sayed, Science, 272, 1924-1926 (1996). I. Lee, R. Morales, M. A. Albiter, and F. Zaera, Proc. Nat. Acad. Sci., 105, 15241-15246 (2008). 20

Shape Selectivity Supported Shape-Selected Pt Catalysts: Preparation 2 + SiO 2 Rinsing Calcination 2 PtCl 6 PVP Sonication Drying Oxidation/Reduction Pt Colloidal Particle Preparation Dispersion on Silica Xerogel Catalyst Pretreatment I. Lee, R. Morales, M. A. Albiter, and F. Zaera, Proc. Nat. Acad. Sci., 105, 15241-15246 (2008). 21

Shape Selectivity Preservation of Nanoparticle Shape during Treatment 3 oxidation-reduction cycles at 475 K 10 nm 3 oxidation-reduction cycles at 575 K 10 nm I. Lee, F. Delbecq, R. Morales, M. A. Albiter, and F. Zaera, Nature Mater., 8, 132-138 (2009). I. Lee, R. Morales, M. A. Albiter, and F. Zaera, Proc. Nat. Acad. Sci., 105, 15241-15246 (2008). 22

Shape Selectivity Butene Cis-Trans Catalytic Selectivity 3 C C 3 C=C cis-2-butene 3 C C=C C 3 trans-2-butene I. Lee, F. Delbecq, R. Morales, M. A. Albiter, and F. Zaera, Nature Mater., 8, 132-138 (2009). I. Lee, R. Morales, M. A. Albiter, and F. Zaera, Proc. Nat. Acad. Sci., 105, 15241-15246 (2008). 23

Shape Selectivity Olefin Cis-Trans Isomerization Relevance Trans fats in partially hydrogenated oils have been linked to a variety of free radical and degenerative conditions such as cancer, arthritis, and cardiovascular disease. 24

Shape Selectivity Other Reactions Size and shape sensitivity also seen in: Unsaturated aldehyde (cinammonaldehyde) hydrogenation Glycerol oxidation Y. Zhu, F. Zaera, Catal. Sci. Technol., 4, 955-962 (2014). Y. Li, F. Zaera, J. Catal., 326, 116-126 (2015). 25

Outline 1. Surface Science of Olefin ydrogenation 2. Shape Selectivity A B 3. Catalyst Nano-Architectures 26

Metal Particle Stabilization In-Situ Growth of Support Around Metal Particles Pt TEOS NaO Pt-Deposition Meso-SiO 2 Coating Etching TEOS NaO Q. Zhang, I. Lee, J. Ge, F. Zaera, Y. Yin, Adv. Funct. Mater., 20(14), 2201 2214 (2010). I. Lee, J. Ge, Q. Zhang, Y. Yin, F. Zaera, Nano Research, 4(1), 115-123 (2011). 27

Metal Particle Stabilization XPS and CO-IR Titration Characterization 73.8 NaO PtO 2085 74.2 TEOS CO/Bead CO/SiO 2 2116 2089 Pt surface becomes available again after etching. Q. Zhang, I. Lee, J. Ge, F. Zaera, Y. Yin, Adv. Funct. Mater., 20(14), 2201 2214 (2010). I. Lee, J. Ge, Q. Zhang, Y. Yin, F. Zaera, Nano Research, 4(1), 115-123 (2011). 28

Metal Particle Stabilization Stability and Reactivity 60 min NaO TEM after CO ads 40 min NaO No etching Stable toward CO adsorption igher reactivity after etching. Q. Zhang, I. Lee, J. Ge, F. Zaera, Y. Yin, Adv. Funct. Mater., 20(14), 2201 2214 (2010). I. Lee, J. Ge, Q. Zhang, Y. Yin, F. Zaera, Nano Research, 4(1), 115-123 (2011). 29

Metal Particle Stabilization Thermal Stability 300 K 875 K 975 K 1075 K Covered Naked Mesoporous layer stops Pt sintering. Q. Zhang, I. Lee, J. Ge, F. Zaera, Y. Yin, Adv. Funct. Mater., 20(14), 2201 2214 (2010). I. Lee, J. Ge, Q. Zhang, Y. Yin, F. Zaera, Nano Research, 4(1), 115-123 (2011). 30

Catalyst Nano-Architectures Tandem Catalysis Shaped Nanoparticles Tethering of Molecular Functionality Yolk-Shell Nanostructures Atomic Layer Deposition Catalysts from Dendrimers Self-Assembled Monolayers 31

Catalyst Nano-Architectures Tandem Catalysis Shaped Nanoparticles Tethering of Molecular Functionality Yolk-Shell Nanostructures Atomic Layer Deposition Catalysts from Dendrimers Self-Assembled Monolayers 32

Catalyst Nano-Architectures Au@Void@TiO 2 Yolk-Shell Synthetic Strategy TiO 2 Au Advantages: Structural stability, prevents sintering. Selective percolation to and from inside. TiO 2 Au I. Lee, M. A. Albiter, Q. Zhang, J. Ge, Y. Yin, F. Zaera, PCCP, 13(7), 2449-2456 (2011). I. Lee, J.-B Joo, Y. Yin, F. Zaera, Angew. Chem., Int. Ed., 50(43), 10208-10211 (2011). 33

Catalyst Nano-Architectures Au@Void@TiO 2 Thermal Stability As Prepared Calcined, 775K Au@TiO 2 50 nm 50 nm Au/TiO 2 -P25 50 nm 50 nm I. Lee, J. B. Joo, Y. Yin and F. Zaera, Angew. Chem., Int. Ed., 43, 10208-10211 (2011). 34

Catalyst Nano-Architectures Au@Void@TiO 2 Shell Porosity CO- Pt CO- TiO 2 Pt TiO 2 TiO 2 Pt TiO 2 CO, in gas phase or dissolved in a liquid, can reach the metal inside. Also works with larger molecules (Cd, Zn-TPP) and other solvents (EtO) TiO 2 I. Lee, J.-B. Joo, Y. Yin, F. Zaera, Angew. Chem. Int. Ed., 50, 10208-10211 (2011). J. Liang, I. Lee, J.-B. Joo, A. Gutierrez, A. Tillekaratne, I. Lee, Y. Yin, F. Zaera, Angew. Chem. Int. Ed., 51, 8034-8036 (2012). J. Li, J. Liang, J.-B. Joo, I. Lee, Y. Yin, F. Zaera, J. Phys. Chem. C, 117, 20043 20053 (2013). 35

Catalyst Nano-Architectures Au@Void@TiO 2 for CO Oxidation CO oxidation at room temperature with Au@Void@TiO 2 comparable to with Au/TiO 2 -P25. I. Lee, J.-B. Joo, Y. Yin, F. Zaera, Angew. Chem., Int. Ed., 50(43), 10208-10211 (2011). 36

Catalyst Nano-Architectures Au@Void@TiO 2 for CO Oxidation Cryo Oxidation RT Oxidation New cryogenic T CO oxidation channel also with Au@Void@TiO 2. I. Lee, J. B. Joo, Y. Yin and F. Zaera, Angew. Chem., Int. Ed., 43, 10208-10211 (2011). I. Lee, J.-B. Joo, Y. Yin, F. Zaera, Surf. Sci., (2015). 37

Catalyst Nano-Architectures Tandem Catalysis Way to combine two or more functionalities in one single catalyst: Bring together incompatible functionalities (i.e., acid + base) Can be used to convert short lived intermediates Solve homogeneous catalyst solubility problems 38

Catalyst Nano-Architectures Tandem Catalysis Only acid + base produces nitrostyrene (3). 39

Conclusions ighly Selective Catalysts Catalyst synthesis with new nanotechnology F. Zaera, J. Phys. Chem. Lett., 1, 621-627 (2010). I. Lee, M. A. Albiter, Q. Zhang, J. Ge, Y. Yin, F. Zaera, PCCP, 13(7), 2449-2456 (2011). F. Zaera, Catal. Lett., 142, 501-516 (2012). F. Zaera, Chem. Soc. Rev., 42 2746-2762 (2013). F. Zaera, ChemSusChem, 6, 1797-1820 (2013). Reaction mechanisms from surface science Catalytic site structure from theory 40

Acknowledgements Juan Simonovis Yujung Dong Ilkeun Lee A Alejandro Negrete Zhihuan Weng B Prof. Yadong Yin 41