Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Similar documents
Math 1b Sequences and series summary

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

5.2 Infinite Series Brian E. Veitch

Review of Power Series

Chapter 11 - Sequences and Series

Section 11.1 Sequences

Topic 7 Notes Jeremy Orloff

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

Math 106: Review for Final Exam, Part II - SOLUTIONS. (x x 0 ) 2 = !

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Let s Get Series(ous)

Sequences and Summations

Introduction and Review of Power Series

Math 0230 Calculus 2 Lectures

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms)

n=1 ( 2 3 )n (a n ) converges by direct comparison to

Infinite Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Objectives. Materials

Power series and Taylor series

Sequence. A list of numbers written in a definite order.

Sequences and infinite series

80 Wyner PreCalculus Spring 2017

Assignment 16 Assigned Weds Oct 11

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Ma 530 Power Series II

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Chapter 8. Infinite Series

AP Calculus Chapter 9: Infinite Series

Ch1 Algebra and functions. Ch 2 Sine and Cosine rule. Ch 10 Integration. Ch 9. Ch 3 Exponentials and Logarithms. Trigonometric.

3.4 Introduction to power series

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

Math 1B, lecture 15: Taylor Series

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance,

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

Math 113 (Calculus 2) Exam 4

Absolute Convergence and the Ratio Test

AQA Level 2 Further mathematics Further algebra. Section 4: Proof and sequences

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

Sequences and Series. College Algebra

Quantum Mechanics for Scientists and Engineers. David Miller

MATH115. Sequences and Infinite Series. Paolo Lorenzo Bautista. June 29, De La Salle University. PLBautista (DLSU) MATH115 June 29, / 16

(Infinite) Series Series a n = a 1 + a 2 + a a n +...

MATH 117 LECTURE NOTES

Section 11.1: Sequences

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

INFINITE SEQUENCES AND SERIES

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Polynomial Approximations and Power Series

Generating Function Notes , Fall 2005, Prof. Peter Shor

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

5.9 Representations of Functions as a Power Series

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

2009 A-level Maths Tutor All Rights Reserved

ftz]}]z .tt#t*qtmjfi aiii } { n } or [ n ] I anianforn 1+2=2+-5 an = n 11.1 Sequences A sequence is a list of numbers in a certain order:

MATH 118, LECTURES 27 & 28: TAYLOR SERIES

CS1800: Sequences & Sums. Professor Kevin Gold

Chapter 4 Sequences and Series

EECS 1028 M: Discrete Mathematics for Engineers

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

LIMITS AND DERIVATIVES

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

Final exam (practice) UCLA: Math 31B, Spring 2017

ICS141: Discrete Mathematics for Computer Science I

Introduction to Decision Sciences Lecture 6

Geometric Series and the Ratio and Root Test

a j x j. j=0 The number R (possibly infinite) which Theorem 1 guarantees is called the radius of convergence of the power series.

in a given order. Each of and so on represents a number. These are the terms of the sequence. For example the sequence

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

JUST THE MATHS SLIDES NUMBER 2.1. SERIES 1 (Elementary progressions and series) A.J.Hobson

Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Infinite Series - Section Can you add up an infinite number of values and get a finite sum? Yes! Here is a familiar example:

Convergence Tests. Academic Resource Center

JUST THE MATHS UNIT NUMBER 2.1. SERIES 1 (Elementary progressions and series) A.J.Hobson

Limits and Continuity

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

Convergence of sequences and series

Absolute Convergence and the Ratio Test

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Infinite Series. Copyright Cengage Learning. All rights reserved.

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show

The Two Faces of Infinity Dr. Bob Gardner Great Ideas in Science (BIOL 3018)

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Chapter 4 ARITHMETIC AND GEOMETRIC PROGRESSIONS 2, 5, 8, 11, 14,..., 101

2t t dt.. So the distance is (t2 +6) 3/2

Lecture 3 - Tuesday July 5th

Chapter Generating Functions

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME

Sequences and Series, Induction. Review

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Lecture 3 Notes

Infinite Series Summary

Transcription:

Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite degree. For example, x x x n is a power series. We ll look at this one in a moment. Power series have a lot of properties that polynomials have, and that makes them easy to work with. Also, they re general enough to represent lots of important functions like e x, ln x, sin x, and cos x. We ll see, for instance, that the function is represented by a power series for x inside x the interval (, ): x = x x x n for x (, ). In order to make that statement, we ll have to define just what it means for a series to have a sum, and that will take us a while. Beyond that, we ll need the theory of Taylor series to develop the following power series for the three important functions e x, cos x, and sin x. For all x, e x = x x! x3 3! x4 4! x5 5! cos x = x! x4 4! sin x = x x3 3! x5 5!. Note that the terms of the cos x series are the even terms of the e x series, but the cos x series alternates sign, and the terms of the sin x series are the odd terms of the e x series, and, again, the sin x series alternates sign. The symbol n! is read n factorial or factorial n (except by some people who like to say n shriek or n bang ), and it means the product of the integers from through n. n(n )(n. Also, 0! is defined to be equal to. We ll have lots of use for factorials while studying Taylor series. Incidentally, you may have come across factorials before if you studied permutations and combinations.

The foundations. We won t look at power series at first; we ll look at series without variables. The term series is used to describe an infinite sum. Definition (Series). A series is a formal expression for an infinite sum. A general series is of the form a a a 3 a n where the terms a, a, a 3..., a n,... are numbers. Sometimes we ll use summation notation to describe a series. In that notation, the series in the definition is written a n. n= We ll follow two examples as we develop this theory. Example (A geometric series). n= n = 4 8 n The first term is a =, the second is a = 4, and the nth term is n. We re interested in the sum of this series, but we ll have to define what the sum of a series is first. This series is called a geometric series because its terms are in a geometric progression (also called a geometric sequence). In a geometric progression each term is found by multiplying the preceding term by a fixed constant, called the ratio. In this example, the ratio is. Example 3 (A harmonic series). n= n = 3 4 n In form, this is very similar to the preceding series. We re interested in its sum, too. This series is called a harmonic series because its terms are in a harmonic progression. The terms in a harmonic progression are reciprocals of the terms in an arithmetic progression. For an arithmetic progression each term is found by adding a fixed constant to the preceding term. The way that we ll get at the sum of a series is by its partial sums. A partial sum is the sum of finitely many terms at the beginning of the series. Definition 4 (Partial sums). The n th partial sum, S n of a series a a a 3 a n is S n = a a a 3 a n. Thus, S = a, S = a a, S 3 = a a a 3, and so forth. The idea is that the sum of the whole series is the limit of the partial sums. That is, if you keep adding more terms of the series, you ll get close to the sum of the series. But that requires that we define what the limit of sequence of partial sums is. So, we ll formally define what a sequence is, and what its limit is.

Definition 5 (Sequence). A sequence is an infinite list of numbers. A general sequence is of the form a, a, a 3,..., a n,.... Associated to each series a a a 3 a n there are two sequences. First, the terms of the series form a sequence a, a, a 3,..., a n,.... Second, the partial sums S, S, S 3,..., S n,... form a sequence. Let s look at the sequence of partial sums for the two examples above. For the geometric series example, S =, S = = 3, and S 4 4 n = = 4 8 n. Thus, the sequence of partial sums is n, 3, 7,..., n,.... 4 8 n The n th partial sum is S n = n =. n n For the harmonic series example, S =, S = = 5, S 3 6 3 = = 3, and 3 4 S 4 = = 77. It s much harder to find an expression for the 3 4 5 60 nth partial sum. Limits of sequences and sums of series We re interested in sequences because the limit of the sequence of partial sums of a series will be defined as the sum of the series. So, we want to know what the limit of sequence is and even if the sequence has a limit. Here s the formal definition. Definition 6 (Limit of a sequence). A sequence a, a, a 3,..., a n,... has a limit L if for each ɛ > 0, there exists a number N such that for all n N, a n L < ɛ. If the sequence has a limit, we say that sequence converges. If it has no limit, we say that it diverges. We ll use two notations for the limit of a sequence. One is lim a n = L. A more abbreviated notation is simply a n L. What this means is that you can make sure that the terms of the sequence are arbitrarily small by going far enough out in the sequence. If you want the terms to be within ɛ = 0.000 of L, you may need to go as far out as N in the sequence, but if you want to be within ɛ = 0.000000 of L, your N will have to be much larger as the terms may not be that close to L until much later in the sequence. The limits we re looking at now, lim a n, are discrete limits, whereas the limits we looked at before of functions, lim f(x), were continuous limits. The main difference is x that n only takes integer values, values that are separated from each other, while x takes all real values, and so x varies continuously. Properties of limits of sequences. Since these discrete limits are defined similarly to continuous limits, they have many of the same properties. Here are a few listed without 3

proof, and one that needs a proof lim c = c where c is a constant, that is, a n = c all n lim (ca n) = c lim a n where c is a constant lim (a n ± b n ) = lim a n ± lim b n lim (a nb n ) = lim lim a n ( b n = lim n = 0 lim a n / a n ) ( lim b n ) lim b n if the denominator doesn t approach 0 Here s the proof of the last limit. According to our definition, lim = 0 means for each n ɛ > 0, there exists a number N such that for all n N, a n L < ɛ, that is, 0 < ɛ. In n order to prove that, let ɛ be positive. We need to find N such that for n N, /n < ɛ. Of course, for n N, /n /N, therefore we only need to find a positive integer N so that /N < ɛ. But that s just the Archimedean property of the real numbers. Thus, the last limit follows from the Archimedean property of the real numbers. There are a couple more important properties of discrete limits. If two sequences both have limits and each term of the first is less than or equal to the corresponding term of the second, then the limit of the first is less than or equal to the limit of the second. Symbolically, if lim a n = L, lim b n = M, and for each n, a n b n, then L M. The pinching lemma, also called the sandwich theorem, says that if two sequences have the same limit, then any intermediate sequence also has the same limit. Symbolically, if lim a n = L = lim c n, and for each n, a n b n c n, then lim b n = L. There s also a property that relates discrete limits to continuous limits. If the terms of a sequence are values of a function and if the continuous limit exists, then so does the discrete limit, and it equals the continuous limit. Symbolically, if for each n, a n = f(n), and lim f(x) = L, then lim a n = L. x Example 7 (Sequence of partial sums). Let s look at the sequence of partial sums of the geometric series. Its partial sums are, 3, 7,..., n,.... The 4 8 n 4 8 n nth term is n, and they get closer to after that. We ll show that the limit L of this sequence is n. Given ɛ > 0 we need to find out how far, N, we have to go out in the sequence to make sure that the terms beyond N are within ɛ of L =. Now, the condition n < ɛ n is equivalent to < ɛ, which, in turn, is equivalent to the condition < n ɛ n, and that s equivalent to log < n. Thus, if we choose N to be any integer greater than or equal to ɛ log, then the terms beyond N will be within ɛ of. Therefore, the limit of this sequence ɛ is. Definition 8 (Sum of a series). A series a a a 3 a n has a sum S if the limit of the partial sums is S, lim S n = S. If the series has a sum, we say that sequence converges. If it has no sum, we say that it diverges. 4

Back to the geometric series 4 8 n. Since its partial sums approach the limit, therefore the sum of this geometric series is. We ll look at general geometric series after the next example. Example 9 (Divergence of a harmonic series). Consider again the harmonic series 3. We ll show that it diverges to infinity by showing that its partial sums diverge 4 n to infinity. Group the terms together as shown ( ) ( ) ( 3 4 ) ( 5 6 7 8 9 6) The first partial sum is S =. The third and seventh partial sums are S 3 = ( ( ) 3 4 ( ( ) 4 4 = = S 7 = ( ( ( 3 4) ) 5 6 7 8 ( ( ( 4 4) ) 8 8 8 8 = = 3 In general, the ( n ) st partial sum is S n = ( ( 3 4) ( 5 8 ) ( n n ) = n Since the partial sums grow by at least every time another grouping of terms is added, therefore they diverge to infinity. Thus, this harmonic series is divergent. Historically, this is an important example. In the 300s, geometric series were known to converge, and a few others, too, but this was the first known series whose terms approach 0 but sums to infinity. Geometric series. In a geometric series, each term is some constant times the preceding term. If we denote the first term a (which we ll assume is not 0) and the ratio of a term to the preceding term by r, then a geometric series has the form a ar ar ar 3. If the ratio r is greater than, then the terms approach infinity, so their sum also approaches infinity. If the ratio r is less than, then half the terms are positive and approach and half are negative and approach. In that case, the sum will not approach any number but be alternately positive or negative. But if the ratio r is small, r <, then the geometric series will converge. We ll find its sum now. Write down the n th partial sum S n, multiply it by r, and subtract. S n = a ar ar ar n rs n = ar ar ar n ar n S n rs n = a ar n Therefore, S n ( r) = a( r n ). Assuming r, we find that the n th partial sum is S n = a rn r. 5

Suppose now that r <. We ll show that lim S n = that follow from the definition. Note that a and lim S n = lim a rn r r a r = a r lim ( rn ) = using a few properties of limits don t depend on n. a ( ) lim r n r Since r <, the powers of r approach 0, that is lim r n = 0. The argument is similar to that for the geometric series we had above with r =. Thus, we ve shown the following theorem. Theorem 0 (Geometric series). The geometric series a ar ar ar 3 a sums to r when r <. It diverges for other values of r. This theorem gives our first power series representation of a function f(x). Set a = and replace r by x. Then the last theorem says that the function f(x) = has the power x series representation x = x x x n for x (, ). Math Home Page at http://math.clarku.edu/~ma/ 6