MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

Size: px
Start display at page:

Download "MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1"

Transcription

1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two zeroes, which occur at π and. We want to find the area between those two angles. This is a bit of a mess, so put your gloves on. It will help to keep in mind the following trig values for cosine, cos = π and cos = +. We ll need some for sine too, but which ones exactly will become clear later. At its heart this question is asking us to calculate the integral ( + sin θ) dθ. There s no magical way to make this go any faster; we ll pull out the, square it, and start chipping away. ( + sin θ) dθ = ( + 4 sin θ + 4 sin θ ) dθ = dθ + sin θ dθ + sin θ dθ So we have three integrals to do. I ll do them one at a time. The first one is a warm-up. dθ = ( π ) = π. Next, the integral of sin θ is cos θ, and at the beginning of the solution I wrote down the relevant values of cosine we d need. π ( ) sin θ dθ = cos θ = =. Now for the hard one. We ll use the identity sin cos θ θ = to improve the integrand; this cancels the coefficient out front. Then we have to do the two pieces: sin θ dθ = = = 4π = 4π ( cos θ ) dθ θ. sin θ π sin π + cos θ dθ sin 4π

2 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page These values of sine are quite big. π is π, so if we deduct that from our inputs we re down to 0π = 5π = π and π = π. The values of sine at these two places are both, since the two angles are in the fourth and first quadrants respectively. + 4 = 4π = 4π +. Adding the three contributions, we arrive at π + 4π + = π. Stunningly, this matches what WolframAlpha tells me.. Write down a geometric series with first term that converges to 7. Solution. A geometric series looks like n=k an. Since we want the first term to be, we should start with n = 0. When a geometric series converges, the value is a n = first term common ratio = a. We want this to equal seven, so we should solve = 7. Doing so gives a =. So the a 7 series we re seeking is ( ) n. 7. Write the number + i in polar form, then calculate its three cube roots. Solution. This number has absolute value 8 and angle π. (You can see what the 4 angle is by the fact that it lies on the line y = x, which makes a forty-five degree angle to the positive x-axis.) This means that + i = 8 e i π 4. The cube roots will have modulus that is the cube root of the starting modulus; that s 8 =. The angles of the cube roots are those angles which, when multiplied by three, become π. One such 4 angle is π, and the others differ from that by increments of π since they re evenly spaced around the circle. That means the other arguments are 9π and. The three cube roots are 8 e i π, 8 e i 9π, and 8 e i.

3 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page 4. Find the Taylor series expansion centered at x = 0 for each of the following. (a) x + x Solution.. (Start from x.) Write the function in the form ( ) x ( x) so that it looks like a modification of. We get x x + x = x ( x) n = ( ) n x n+. However you want to write this is fine, as long as that s what it equals. (b) xe x. (This is the derivative of e x, so start there and take the derivative.) Solution. Okay, to be fair there are multiple ways to do this. But I wanted you to start with e x = (x ) n = x n = + x! + x4! + x! +. and then take the derivative. You could just as well multiply by x. If you take the derivative, the first term, which was just a, will drop out, so the summation begins at n = instead. However you want to write it, the answer is n= nx n = x n+ = x + 4x! + x5! +. Maybe it would be nice to clean up n = (n )! in the first expression. Eh, too late now. 5. Use the Lagrange remainder formula to decide how good of an estimate you ll get if you use + ( )! as an estimate for e. How many terms are needed to get the error to less than? 00 Solution. The remainder formula (which I will give you) is f (n+) (x) [error in stopping after exponent n] max 0 x a (n + )! a n+. Apply this with f = e x, a =. The derivatives of e x are all ±e x, which in absolute value will always be +e x. This function is decreasing, so the maximum will occur at

4 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page 4 the beginning, i.e., at x = 0. That maximum is e 0 =, so that s what we ll use for the numerator. Since we cut off after the degree term, we get [error] ( ) =! 8 = 48. ( If this process is repeated with n = 4 instead we ll get ) 4, 4! which has denominator times 4. I don t know exactly what that is off the top of my head, but it s definitely bigger than. So we need up through the exponent term to get error less than Calculate the interval of convergence for xn. Solution. Ratio test: (n + )! x n+ lim = lim (n + ) x = x lim (n + ) =. n x n n n If x 0, the calculation shows that the limit we do in the ratio test will explode to infinity. That s not known for being less than one, so apparently it diverges for all nonzero x. When x = 0 on the other hand all the terms with x in them will die, so we just get + lots of zeroes = which is a number. So the sum only converges when x = 0; this means the radius of convergence is R = 0 and the interval of convergence is {0} (a single point). You can also write this as [0, 0]. 7. Write the following series in summation notation. What is its radius of convergence? x + 4! x + 8 5! x + 7! x4 + 9! x5 +. Solution. Let s have n represent the exponent on x in each term. The summation will then be from n = to infinity. The numerators are powers of two, and the exponent on said power matches the exponent on x. So we re at n n= (??)! xn at this point. The factorials are consecutive odd numbers; at each step they go up by two, so the way to write this will be with a linear function that has slope two. ( Over one, up two is what it means to have slope two.) So it s (n +?)!, and messing around with small values of n shows that the question mark should be. The series is n= n (n )! xn. Having done this, it s time for the ratio test to find the radius of convergence: n+ x n+ lim n (n + )! (n )! (n )! = x lim n x n n (n + )! = x lim n (n)(n + ) = 0. This limit is kind of the opposite of the previous one. Regardless of what we choose for x, the limit will work out to zero. The ratio test is always happy about this, since zero is less than one. So the series converges for all x; the radius of convergence is infinity.

5 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page 5 8. Solve the initial value problem dy dx = xy, with initial condition y() = 4. Solution. This equation is separable, since we can write it as dy = x dx. Integrating y both sides gives us = x + C. If we take care of the initial condition at this point, y we ll plug in x = and y = 4. That means = + C, or C = 9. If we then negate 4 4 both sides and take the reciprocal, we get the answer y = x Suppose f is a function whose Taylor series centered at x = begins Explain why f has a maximum at x =. f = (x ) + 4(x ) +. Solution. The series I gave you is supposed to be equal to f() + f ()(x ) + f ()! (x ) + f ()! (x ) +, which means if we equate coefficients we find that f() =, f () = 0, f () = 4, and f () = 4. The fact that f () = 0 is suspicious; it means there s likely a max or a min at x =. To determine which, we can look at the second derivative: because f () = 4, the function is concave down. That means that f comes to a peak and has a maximum. 0. True and false questions!? ( π ) ( ( π )) T F (a) + sin + sin + converges to sin ( ). π ( π ) ( ( π )) T F (b) + tan + tan + converges to tan ( ). π Solution. (a) is true and (b) is false. It is true that an =, but this a formula only works if the series converges, and that happens if and only if a <. Since sin( π) = and that s less than, we re safe. But tan( π) = which is larger than, so that series diverges to infinity.

6 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page T F (c) T F (d) 5 (x ) dx =. Solution. False. Similar to part (b), this integral is actually improper since the integrand has an asymptote at x = which is in the middle of our range of integration. If you do out the improper integral, you ll find that it diverges. What s written here can t possibly be correct in any case, because the integral of a positive function can t be a negative number. n= ( ) n cos n n converges, but not absolutely. Solution. False, since it does converge absolutely. With absolute values we have cos n n=, which is less than or equal to n n= (owing to the fact that n 0 cos n for all n). We ve just compared to a p-series with p =, so the larger series converges, meaning the smaller one does as well. T F (e) The range of arcsin(x) is [, ]. Solution. False, that s the domain of arcsine. (It s the range of sin x.) The range is [ pi T F (f) Suppose a n (x ) n is a power series which converges when x = 5. When n= x =, the series converges. Solution. True. The first fact tells us the radius of convergence is at least. Since x = is only one unit away from the center of the series (namely, ), is inside the radius of convergence.. Decide the method needed to do calculate the following integrals. The options are integration by parts, trig sub, partial fractions, and u-substitution. If you d integrate by parts, say what u and dv are. If you d do a trig substitution, say what substitution it is. If you d use partial fractions, write out the template you d use for breaking down the integrand. If you d do a u-substitution, actually do the substitution and get an integral that only involves u, but don t go any further than that. x + (a) x 4x dx Solution. Do partial fractions. The denominator factors as x(x 4), so the template is x + x 4x = A x + B x 4.

7 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page 7 (b) sin x cos x dx Solution. Break off two sines, then do a u-substitution with u = cos x, du = sin x dx. You get sin x cos x dx = sin x( cos x) cos x dx = ( u )u du. (c) x sin(x) dx Solution. Integrate by parts with u = x and dv = sin(x) dx. (This one actually needs two rounds, but whatever, this is how you start.) x + 9 (d) dx x Solution. Trig sub here, with x = tan θ.

MATH141: Calculus II Exam #4 7/21/2017 Page 1

MATH141: Calculus II Exam #4 7/21/2017 Page 1 MATH141: Calculus II Exam #4 7/21/2017 Page 1 Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the honor

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

Last/Family Name First/Given Name Seat #

Last/Family Name First/Given Name Seat # Math 2, Fall 27 Schaeffer/Kemeny Final Exam (December th, 27) Last/Family Name First/Given Name Seat # Failure to follow the instructions below will constitute a breach of the Stanford Honor Code: You

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Math 1272 Solutions for Fall 2005 Final Exam

Math 1272 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Exam ) This fraction appears in Problem 5 of the undated-? exam; a solution can be found in that solution set. (E) ) This integral appears in Problem 6 of the Fall 4 exam;

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6, Math 140 MT1 Sample C Solutions Tyrone Crisp 1 (B): First try direct substitution: you get 0. So try to cancel common factors. We have 0 x 2 + 2x 3 = x 1 and so the it as x 1 is equal to (x + 3)(x 1),

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

False. 1 is a number, the other expressions are invalid.

False. 1 is a number, the other expressions are invalid. Ma1023 Calculus III A Term, 2013 Pseudo-Final Exam Print Name: Pancho Bosphorus 1. Mark the following T and F for false, and if it cannot be determined from the given information. 1 = 0 0 = 1. False. 1

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

MATH 31B: BONUS PROBLEMS

MATH 31B: BONUS PROBLEMS MATH 31B: BONUS PROBLEMS IAN COLEY LAST UPDATED: JUNE 8, 2017 7.1: 28, 38, 45. 1. Homework 1 7.2: 31, 33, 40. 7.3: 44, 52, 61, 71. Also, compute the derivative of x xx. 2. Homework 2 First, let me say

More information

Final Exam Review Quesitons

Final Exam Review Quesitons Final Exam Review Quesitons. Compute the following integrals. (a) x x 4 (x ) (x + 4) dx. The appropriate partial fraction form is which simplifies to x x 4 (x ) (x + 4) = A x + B (x ) + C x + 4 + Dx x

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

Section 8.2: Integration by Parts When you finish your homework, you should be able to

Section 8.2: Integration by Parts When you finish your homework, you should be able to Section 8.2: Integration by Parts When you finish your homework, you should be able to π Use the integration by parts technique to find indefinite integral and evaluate definite integrals π Use the tabular

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I MA Practice Final Answers in Red 4/8/ and 4/9/ Name Note: Final Exam is at :45 on Tuesday, 5// (This is the Final Exam time reserved for our labs). From Practice Test I Consider the integral 5 x dx. Sketch

More information

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function.

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function. 5.3: The Fundamental Theorem of Calculus EX. Given the graph of f, sketch the graph of x 0 f(t) dt. The definite integral gives the area under the curve. EX 2. Find the derivative of g(x) = x 0 + t 2 dt.

More information

SUMMATION TECHNIQUES

SUMMATION TECHNIQUES SUMMATION TECHNIQUES MATH 53, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Scattered around, but the most cutting-edge parts are in Sections 2.8 and 2.9. What students should definitely

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

AP Calculus AB Summer Math Packet

AP Calculus AB Summer Math Packet Name Date Section AP Calculus AB Summer Math Packet This assignment is to be done at you leisure during the summer. It is meant to help you practice mathematical skills necessary to be successful in Calculus

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code

Essex County College Division of Mathematics MTH-122 Assessments. Honor Code Essex County College Division of Mathematics MTH-22 Assessments Last Name: First Name: Phone or email: Honor Code The Honor Code is a statement on academic integrity, it articulates reasonable expectations

More information

Math 106: Review for Final Exam, Part II - SOLUTIONS. (x x 0 ) 2 = !

Math 106: Review for Final Exam, Part II - SOLUTIONS. (x x 0 ) 2 = ! Math 06: Review for Final Exam, Part II - SOLUTIONS. Use a second-degree Taylor polynomial to estimate 8. We choose f(x) x and x 0 7 because 7 is the perfect cube closest to 8. f(x) x /3 f(7) 3 f (x) 3

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90

Final practice, Math 31A - Lec 1, Fall 2013 Name and student ID: Question Points Score Total: 90 Final practice, Math 31A - Lec 1, Fall 13 Name and student ID: Question Points Score 1 1 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 Total: 9 1. a) 4 points) Find all points x at which the function fx) x 4x + 3 + x

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

1 a) Remember, the negative in the front and the negative in the exponent have nothing to do w/ 1 each other. Answer: 3/ 2 3/ 4. 8x y.

1 a) Remember, the negative in the front and the negative in the exponent have nothing to do w/ 1 each other. Answer: 3/ 2 3/ 4. 8x y. AP Calculus Summer Packer Key a) Remember, the negative in the front and the negative in the eponent have nothing to do w/ each other. Answer: b) Answer: c) Answer: ( ) 4 5 = 5 or 0 /. 9 8 d) The 6,, and

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

More Final Practice Problems

More Final Practice Problems 8.0 Calculus Jason Starr Final Exam at 9:00am sharp Fall 005 Tuesday, December 0, 005 More 8.0 Final Practice Problems Here are some further practice problems with solutions for the 8.0 Final Exam. Many

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2015 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

MATH 2300 review problems for Exam 1 ANSWERS

MATH 2300 review problems for Exam 1 ANSWERS MATH review problems for Exam ANSWERS. Evaluate the integral sin x cos x dx in each of the following ways: This one is self-explanatory; we leave it to you. (a) Integrate by parts, with u = sin x and dv

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3 Math (Calculus II) Final Eam Form A Fall 22 RED KEY Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.. Which of the following series converge absolutely? ) ( ) n 2) n 2 n (

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

53. Flux Integrals. Here, R is the region over which the double integral is evaluated. 53. Flux Integrals Let be an orientable surface within 3. An orientable surface, roughly speaking, is one with two distinct sides. At any point on an orientable surface, there exists two normal vectors,

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

CHAPTER 7: TECHNIQUES OF INTEGRATION

CHAPTER 7: TECHNIQUES OF INTEGRATION CHAPTER 7: TECHNIQUES OF INTEGRATION DAVID GLICKENSTEIN. Introduction This semester we will be looking deep into the recesses of calculus. Some of the main topics will be: Integration: we will learn how

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx Math 6 Eam # Solutions. Evaluate the indefinite integral cos( d. Answer: The plan is to use integration by parts with u = and dv = cos( d: u = du = d dv = cos( d v = sin(. Then the above integral is equal

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Math 142, Final Exam, Fall 2006, Solutions

Math 142, Final Exam, Fall 2006, Solutions Math 4, Final Exam, Fall 6, Solutions There are problems. Each problem is worth points. SHOW your wor. Mae your wor be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

CALC 2 CONCEPT PACKET Complete

CALC 2 CONCEPT PACKET Complete CALC 2 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Name: Answer Key David Arnold. Math 50B Integral Calculus May 13, Final Exam

Name: Answer Key David Arnold. Math 50B Integral Calculus May 13, Final Exam Math 5B Integral Calculus May 3, 7 Final Exam Name: Answer Key David Arnold Instructions. (9 points) Follow the directions exactly! Whatever you are asked to do, you must do to receive full credit for

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

MATH 20B MIDTERM #2 REVIEW

MATH 20B MIDTERM #2 REVIEW MATH 20B MIDTERM #2 REVIEW FORMAT OF MIDTERM #2 The format will be the same as the practice midterms. There will be six main questions worth 0 points each. These questions will be similar to problems you

More information

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus

(a) x cos 3x dx We apply integration by parts. Take u = x, so that dv = cos 3x dx, v = 1 sin 3x, du = dx. Thus Math 128 Midterm Examination 2 October 21, 28 Name 6 problems, 112 (oops) points. Instructions: Show all work partial credit will be given, and Answers without work are worth credit without points. You

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Solving a Series. Carmen Bruni

Solving a Series. Carmen Bruni A Sample Series Problem Question: Does the following series converge or diverge? n=1 n 3 + 3n 2 + 1 n 5 + 14n 3 + 4n First Attempt First let s think about what this series is - maybe the terms are big

More information