Integrated site investigation of shallow bedrock sites for seismic site response study

Similar documents
EVALUATION OF DYNAMIC PROPERTIES AND GROUND PROFILES USING MASW: CORRELATION BETWEEN V S AND N 60

SITE RESPONSE ANALYSES BASED ON SITE SPECIFIC SOIL PROPERTIES USING GEOTECHNICAL AND GEOPHYSICAL TESTS: CORRELATIONS BETWEEN G MAX AND N 60

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY

CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

Chapter 12 Subsurface Exploration

Integration of Seismic Refraction and 2D Electrical Resistivity in Locating Geological Contact

SEISMIC SURVEY METHODS

Rock mass disturbance effects on slope assessments using limit equilibrium method

Basim R. Hijab, Amer Al-Khalidy University of Baghdad, Department of Earth Science

Sensors & Transducers 2015 by IFSA Publishing, S. L.

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar

Earthquake maximum magnitude estimation considering regional seismotectonic parameters

Appendix J. Geological Investigation

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical

CENTER FOR INFRASTRUCTURE ENGINEERING STUDIES

Effect of beam-column joint stiffness on the design of beams

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

SOIL CHARACTERIZATION OF JABALPUR CITY USING BORE LOGS

SITE INVESTIGATION 1

Application of 2D Electrical Resistivity Imaging Technique for Engineering Site Investigation

Gotechnical Investigations and Sampling

Hybrid Seismic Survey on the Gamanjunni Rockslide Site

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

B7 Applications of DC resistivity exploration

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods

Estimation of Shear Wave Velocity Using Correlations

Damage detection of shear connectors in composite bridges under operational conditions

NSE 3.7. SEG/Houston 2005 Annual Meeting 1121

SOIL INVESTIGATION USING MULTICHANNEL ANALYSIS OF SURFACE WAVE (MASW) AND BOREHOLE

GEOPHYSICAL INVESTIGATIONS FOR IDENTIFICATION OF SUBSURFACE. Arindam Dey Assistant Professor Department of Civil Engineering IIT Guwahati

Soil Mechanics and Foundation Engineering, Vol. 53, No. 1, March, 2016 (Russian Original No. 1, January-February, 2016)

SEISMIC RADAR AND ELECTRICAL TECHNIQUES FOR WASTE DISPOSAL ASSESSMENT. M. Pipan, G. Dal Moro, E. Forte & M. Sugan

Module 1 : Site Exploration and Geotechnical Investigation

PREDICTION OF SHEAR WAVE VELOCITY USING SPT N VALUE 1

GEOTECHNICAL INVESTIGATION REPORT

Resistivity survey at Stora Uppåkra, Sweden

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

MOUNT POLLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT POLLEY TAILINGS DAM PROJECT

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology

Hamed Aber 1 : Islamic Azad University, Science and Research branch, Tehran, Iran. Mir Sattar Meshin chi asl 2 :

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA

Applicability Of Standard Penetration Tests To Estimate Undrained Shear Strength Of Soils Of Imphal.

Comparison of Two Geophysical Methods to Investigate Sand and Gravel Deposits, a Case Study in Chumphuang District, Nakhornratchasima, Thailand

Geotechnical Investigation Juneau Seawalk - Taku Fisheries to Miner s Wharf Juneau, Alaska DM&A Job No

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

2-D Resistivity Study: The Horizontal Resolution Improvement by Introducing the Enhancing Horizontal Resolution (EHR) Technique

Appendix B: Geophysical Data (Thesis Appendix, 2013)

Relationship between Shear Wave Velocity and SPT-N Value for Residual Soils

Dr. P. Anbazhagan 1 of 61

Geophysical Methods for Screening and Investigating Utility Waste Landfill Sites in Karst Terrain

CHAPTER 3 METHODOLOGY

GEOTECHNICAL SITE CHARACTERIZATION

Correlation Between Low Strain Shear Modulus and Standard Penetration Test N Values

International Journal of Advanced and Applied Sciences

The Preliminary Study of Meteorite Impact Crater at Bukit Bunuh, Lenggong

Beyond Rippability A Case History Integrating Seismic Refraction, Electrical Resistivity Imaging, and Geotechnical Boring Logs

Geoelectrical characterization for liquefaction at coastal zone in South Aceh


A case study of crystalline limestone intrusion and fault zone identication using 2d eri technique in Ramco cements, pandalgudi mines, Tamilnadu

Geophysical Investigation of Ground Water Using Vertical Electrical Sounding and Seismic Refraction Methods

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx

GIS INTEGRATION FOR MICROZONATION HAZARD MAPPING -A CASE STUDY OF BANGALORE CITY, INDIA

Geo-imaging: An Introduction to Engineering Geophysics

B-1 SURFACE ELEVATION

STABILITY ANALYSIS OF EARTH DAM SLOPES SUBJECTED TO EARTHQUAKE USING ERT RESULTS INTERPRETATION

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles

Geotechnical verification of impact compaction

Saturated hydraulic conductivity of sulfuric horizons in coastal floodplain acid sulfate soils: variability and implications

Oil and Gas Research Institute Seismic Analysis Center Faults Detection Using High-Resolution Seismic Reflection Techniques

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

Application of Interferometric MASW to a 3D-3C Seismic Survey

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Correlation of Resistivity Value with Geotechnical N-Value of Sedimentary Area in Nusajaya, Johor, Malaysia

Tu 22P1 04 Combination of Geophysical Technques to Characterize Sediments (Ebro Delta, Spain)

Groundwater Level Monitoring of the Quaternary Aquifer at Al Ain City, United Arab Emirates (UAE) using Geophysical Methods

High Resolution Time-domain Induced Polarization Tomography with Merging Data Levels by Two Different Optimized Arrays for Slope Monitoring Study

AMPLIFICATION FROM ISOSEISMAL MAP AND SITE RESPONSE ANALYSIS

INTERROGATING LEVEES IN TEXAS, NEW MEXICO, AND NEW ORLEANS USING VARIOUS SEISMIC METHODS. Abstract

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

The attitude he maintains in his relation to the engineer is very well stated in his own words:

Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho

Geophysical techniques for investigating shallow and deep landslides: results in the framework of PREVIEW project (FP6 UE)

Advanced Foundation Engineering

Seismoelectric Ground-flow DC-4500 Locator

M E M O R A N D U M. Mr. Jonathan K. Thrasher, P.E., Mr. Ian Kinnear, P.E. (FL) PSI

SPATIAL VARIABILITY MAPPING OF N-VALUE OF SOILS OF MUMBAI CITY USING ARCGIS

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM

The Efficacy of Enhancing Horizontal Resolution (EHR) Technique in Shallow Subsurface Study Using 2D Resistivity Method at Bukit Bunuh

Elijah Adebowale Ayolabi, Ph.D. 1, Adetayo Femi Folorunso, M.Sc. 2*, Ayodele Franklin Eleyinmi, B.Sc. 1, and Esther O. Anuyah, B.Sc.

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

ESTABLISHINGA RELATIONSHIP BETWEEN ELECTRICAL RESISTIVITY MEASUREMENTS AND SOIL PENETRATION TEST VALUES A CASE STUDY

An Assessment of Electrical Resistivity Soundings Data by Different Interpretation Techniques

Safe bearing capacity evaluation of the bridge site along Syafrubesi-Rasuwagadhi road, Central Nepal

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT

Seismic Surveying. Dr. Laurent Marescot. Course given at the University of Fribourg (2009) Contact:

Transcription:

Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Integrated site investigation of shallow bedrock sites for seismic site response study Deepu Chandran Indian Institute of Science P Anbazhagan Indian Institute of Science Yuan Quan WTS LTD H Abdul Kadar Prabhu WTS LTD Publication details Chandran, D, Anbazhagan, P, Quan, Y, Abdul Kadar Prabhu, H 2014, 'Integrated site investigation of shallow bedrock sites for seismic site response study', in ST Smith (ed.), 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), vol. II, Byron Bay, NSW, 9-12 December, Southern Cross University, Lismore, NSW, pp. 1249-1254. ISBN: 9780994152008. epublications@scu is an electronic repository administered by Southern Cross University Library. Its goal is to capture and preserve the intellectual output of Southern Cross University authors and researchers, and to increase visibility and impact through open access to researchers around the world. For further information please contact epubs@scu.edu.au.

23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23) Byron Bay, Australia, 9-12 December 2014, S.T. Smith (Ed.) INTEGRATED SITE INVESTIGATION OF SHALLOW BEDROCK SITES FOR SEISMIC SITE RESPONSE STUDY Deepu Chandran Research Scholar, Department of Civil Engineering, Indian Institute of Science, Bangalore, India. deepuchandran88@gmail.com Anbazhagan P* Assistant Professor, Department of Civil Engineering, Indian Institute of Science, Bangalore, India. anbazhagan@civil.iisc.ernet.in (Corresponding Author) Yuan Quan Managing Director, WTS LTD, Shenzhen, China. tsuen.yuen@wtsgeo.com H Md Abdul Kadar Prabhu Country Sales & Marketing Manager-India Chapter, WTS LTD, Shenzhen, China. abdul.hassan@wtsgeo.com ABSTRACT Study of seismic hazard and site response are essential and has become mandatory for the design of important structures. Subsurface investigation is an important step, from where input parameters for site response studies like shear wave velocity (Vs), density, thickness and damping characteristics etc are obtained. Most of the site response studies at shallow bedrock site are usually carried out by using Standard penetration test (SPT) N values and Vs from Multichannel Analysis of Surface Waves (MASW) with assumption that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock region due to heterogeneous soil deposits. The objective of this study is to generate subsurface profiles at shallow bedrock region using integrated site investigation testing. In this study drilling of borehole with SPT N value measurement, seismic testing of MASW and Electrical Resistivity Tomography (ERT) has been carried out at selected locations in Hampi, Karnataka, India. SPT gives soil type and density, MASW gives shear wave velocity and resistivity testing gives layer thickness. Integrated subsurface profiles are generated and are used to understand variation of subsurface layers in shallow bedrock sites and validate 1-D site response study assumptions. These subsurface profiles may be further used to understand difference of 1-D and 2-D site response. KEYWORDS Subsurface investigation, soil profiling, SPT, MASW, electrical resistivity. INTRODUCTION Southern India once considered as a stable continent has experienced many earthquakes recently indicating that it has become moderately seismically active region. Site specific site response studies are essential and have become one of the mandatory steps for the design of important structures. The input parameters for site response studies like shear wave velocity (Vs), density, thickness and damping characteristics etc are obtained from the detailed subsurface investigation of the site. Hence subsurface exploration is an important step in the site response analysis. Most of the site response This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 1249

studies at shallow bedrock site are one dimensional and usually carried out by using Standard Penetration Test (SPT) N values and Vs from Multichannel Analysis of Surface Waves (MASW) with the assumptions that soil layers are horizontal, uniform and homogeneous (Anbazhagan et al. 2007; Umut, 2004). These assumptions are not completely true in shallow bedrock region due to heterogeneous soil. The use of Electrical resistivity tomography (ERT) provides the electrical image of subsurface soil and has become an important tool for the electrical characterization of soil in 2D where it is possible to extract the continuous and special variability of soil layer properties and thickness (Sudha et al. 2009; Braga et al. 1999). Various attempts have been made in literatures to characterize the subsoil using ERT (Samoulelian et al. 2005; Cosenza et al. 2006; Gay et al. 2006). The objective of this study is to generate subsurface profiles at shallow bedrock region using integrated site investigation testing. In this study drilling of borehole with SPT N value measurement, seismic testing of MASW and Electrical Resistivity Tomography (ERT) has been carried out at selected locations at Hampi, Karnataka, India. SPT tests gives soil type and density, MASW gives shear wave velocity and resistivity testing gives layer thickness. Integrated subsurface profiles are generated and are used to understand variation of subsurface layers in shallow bedrock sites and validate 1-D site response study assumptions. These subsurface profiles may be further used to understand difference of 1-D and 2-D site response. STUDY AREA AND METHODOLOGY Study area selected for this work was Hampi, Karnataka, India. Hampi is an important archaeological site in India which is at the northern part of Karnataka state. SPT N value measurement, seismic testing by MASW and Resistivity imaging has been carried out at selected locations at Hampi. ERT survey lines were selected based on the availability of space and borehole data. Both SPT and MASW tests were conducted at the same location in such a way that these tests comes over the ERT survey line. Spatial variation of soil layer thickness is arrived from resistivity imaging. MASW test results are used to map the shear wave velocity (Vs) variation with depth. SPT test gives soil type and density values and also used to crosscheck the other two geophysical test results. The combined test results of SPT, MASW and Resistivity imaging used to map the final 2-D subsurface profiles which can be further used for the 2D site response analysis. Standard Penetration Test (SPT) The standard penetration test is a widely used in situ test in a borehole to evaluate the dynamic properties of soil. 150 mm dia/nx size boreholes were drilled in all kinds of soil/weathered strata using rotary drilling by wash boring method as per IS: 1892 (1979). The SPT was conducted as per IS: 2131(1981) at various depths in the boreholes. A split spoon sampler with external and internal diameter of 50.8 and 38 mm respectively and 650 mm long was driven into the soil under the impact of a 63.5 kg hammer from a height of 0.75 m. The number of blows required by the sampler to penetrate the 300 mm of depth is called the N-SPT value. Typical Borehole drilled at a location along with SPT-N value is shown in Figure 1. Whenever the N-SPT value exceeds 50 for 300 mm penetration, it was treated as refusal or rebound (R) and further N-SPT values were not measured for that depth. Disturbed and undisturbed samples were collected at possible depths as per IS: 2132 (1986). The physical properties were measured in the laboratory using disturbed soil samples as per IS: 1498 (1970) and used for soil classification in this paper. N-SPT values and soil profiles were recorded in the field itself. ACMSM23 2014 1250

BH No 1 Date of commencement: 17/08/2012 Date of completion : 18/08/2012 Depth Below GL(m) 0 1 2 3 4 5 6 7 Soil Description Thickness of Strata (m) Legend Details of Sampling Depth Type (m) Clayey silt 2m SPT 1.5 Clayey silty sand 5m SPT N Value 11 (4,5,6) SPT 3.0 9 (3,4,5) SPT 4.5 15 (5,7,8) 8 9 10 Disintegrated weathered rock Hard rock 1m SPT 7 Below 8m SPT 8 Note: SPT Standard Penetration Test R Rebound Figure 1. Typical borelog at location 6 with SPT-N values 23 (8,9,14) 50R for no penetration Multichannel Analysis of Surface Wave (MASW) method MASW is a geophysical method, which generates a shear wave velocity profile (ie., Vs versus depth) by analyzing Raleigh-type surface waves. MASW system used for this study consists of 24 channel geode seismograph with 24 geophones of 4.5Hz capacity. The MASW spread length was selected in such a way that the midpoint of the MASW spread length matches with the SPT borehole points. All tests have been carried out with geophone interval of 1 m. Source has been kept on both side of the spread and distance to source from the first and last receiver have been varied from 5 m, 10 m and 15 m to avoid the near-field and far-field effects. The seismic waves were created by impulsive source of 10 pound sledge hammer with 1 x1 size hammer plate with 10 shots; these waves were captured by geophones (Park et al. 1999). The captured surface waves were analyzed by a software package of Surfseis. The typical shear wave velocity profile at a test location in Hampi is shown in Figure 2. Even though MASW gives Vs which is required for site response analysis, but it is difficult to identify layer type and thickness. Figure 2. Typical Vs profile for the site Hampi ACMSM23 2014 1251

Electrical Resistivity Tomography (ERT) Electrical resistivity tomography (ERT) was carried out using multi electrode system. The instrument used for the study was GD-10 Series, DC Digital Resistivity Meter from WTS Limited,China. GD-10 Series is a new-state-of-the-art Multi-Electrode Resistivity Imaging System, which can automatically measure and store primary voltage (Vp), current (Ip), apparent resistivity (Ro), etc and is capable of conducting 1D VES/SP/IP Sounding & 2D & 3D Resistivity/IP Imaging function. It is widely applied in hydrology and engineering explorations as groundwater detection, inspecting reservoir base and level for incipient fault, as well as in metal and nonmetal resources exploration, civil geophysical prospecting, railway and geothermal application. Based on the availability of space for aligning the survey line the number of electrodes, electrode spacing and the total length of the survey line varies. The data using Schlumberger Wenner sequence with either 30 or 60 combination of electrodes were deployed along the profile line at an inter-electrode spacing which varied from 2m to 5m. The total length of each profile line varied from 58 m to 295 m. RES2DINV code (Loke and Barker, 1996; Loke, 1997) was used for the processing and inversion of resistivity image profile data. The method uses a finite difference scheme for solving the 2-D forward problem and blocky inversion method for inverting the processed ERT data and it (RES2DINV) generates the inverted resistivity depth image for each profile line. Soil layer thickness and layer properties were interpreted from the resistivity profiles by cross checking with the conventional borehole data. Interpretations show that the resistivity profiles match well with the borehole data. Typical resistivity profiles at location in Hampi are shown in Figure 3. (a) (b) Figure 3. (a), (b) Typical Electrical Resistivity Tomography (ERT) profiles at Hampi ACMSM23 2014 1252

RESULTS AND DISCUSSIONS SPT and MASW tests were conducted at different points over ERT survey lines. MASW test gives the variation of Vs with depth and SPT give soil type, density and thickness. However it is difficult to capture spatial variation using these two methods. These actual undulations in the soil layer thickness and property in the site was captured by Electrical Resistivity Tomography (ERT). So combining these three methods (ERT, SPT and MASW) it is possible to generate the detailed 2D subsurface profile of the site which shows the spatial variation of the layer thickness (from ERT), soil type (from SPT) and the Vs value of each layer (from MASW). Typical 2D subsurface profiles are shown in Figure 4. From these profiles it is possible to distinguish the clear variation of layer thickness, soil type and corresponding shear wave velocity values. This can be further used for the 2-D site response analysis and numerical simulations. Integrated subsurface investigations using SPT, MASW and ERT can give detailed subsurface profiling which are useful for 2D site response and other numerical simulations. Vs= 241m/s Vs= 515m/s (a) Vs= 212m/s Vs= 230m/s Vs= 731m/s Vs= 367m/s (b) Figure 4. (a), (b) Typical 2D subsurface profiles generated by combining the three methods ie, ERT, SPT and MASW ACMSM23 2014 1253

CONCLUSIONS Geotechnical and geophysical investigations have been carried out at different test locations in Hampi. The SPT was conducted at various depths in the boreholes and the soil type and layer thickness was estimated. MASW along with the software Surfseis has been used to calculate the shear wave velocity of soil profile in all the borehole locations. But both MASW and SPT fail to give the actual variation of layer properties and thickness. This is achieved by conducting ERT. Resistivity surveys has been conducted at the selected locations and with the help of RES2DINV code the continuous spatial variation of soil, the layer thickness and properties were interpreted by comparing with the borehole data. By combining and correlating the geotechnical and geophysical data final 2-D subsurface profiles were generated. This study shows that the assumption that soil layers are horizontal and are of uniform thickness is not valid in the shallow bedrock site investigated. Integrated subsurface investigation will give more reliable subsurface profiling. These reliable subsurface profiles may be further used for the 2-D site response analysis and numerical simulations. It can also be used to understand difference of 1-D and 2-D site response. The mapping of soil profile by combining the methods ERT, MASW and SPT is efficient, fast and economic in comparison to the single (SPT or MASW) method. REFERENCES Anbazhagan, P., Sitharam, T.G., and Divya, C. (2007) Site response analyzes based on site specific soil properties using geotechnical and geophysical tests: correlation between G max and N 60, Fourth International Conference on Earthquake Geotechnical Engineering, 4 th ICEGE 2007, Thessaloniki, Greece, 25-28 June 2007. Braga, A., Malagutti, W., Dourado, J. and Chang, H. (1999) Correlation of electrical resistivity and induced polarization data with geotechnical survey standard penetration test measurements, Journal of Environmental and Engineering Geophysics,Vol. 4, pp. 123 130. Cosenza, P., Marmet, E., Rejiba, F., Cui, Y.J., Tabbagh, A. and Charlery, Y. (2006) Correlations between geotechnical and electrical data: a case study at Garchy in France, Journal of Applied Geophysics, Vol. 60, pp. 165 178. Gay, D.A., Morgan, F.D., Vichabian, Y., Sogade, J.A., Reppert, P. and Wharton, A.E. (2006) Investigations of andesitic volcanic debris terrains: Part 2 Geotechnical, Geophysics, Vol. 71, B9 B15. IS 1498., 1970. Indian Standard Classification and identification of soils for general engineering purposes, First revision, Bureau of Indian Standards, New Delhi. IS 1892.,1974. Indian Standard code of Practice for subsurface investigation for foundations, Bureau of Indian Standards, New Delhi. IS 2131.,1981. Indian Standard, Method for standard penetration test for soils, First revision, Bureau of Indian Standards, New Delhi. IS 2132., 1986. Indian Standard code of Practice for thin walled tube sampling of soils, Second revision, Bureau of Indian Standards, New Delhi. Loke, M.H. and Barker, R.D. (1996) Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-newton method, Geophysical Prospecting, Vol. 44, pp. 131 152. Loke, M.H. (1997) RES2DINV ver. 3.3 for Windows 3.1, 95, and NT Advanced Geosciences, Inc. 66. Park, C.B., Miller, R.D. and Xia, J. (1999) Multichannel Analysis of Surface Waves, Geophysics,Vol. 64, pp. 800-808. Sudha, K., Israil, M., Mittal, S. and Rai, J. (2009) Soil characterization using electrical resistivity tomography and geotechnical investigations, Journal of Applied Geophysics, Vol. 67, pp. 74 79 Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005) Electrical resistivity survey in soil science: a review, Soil & Tillage Research Vol.83, pp. 173 193. Umut Destegul. (2004) Sensitivity Analysis of Soil Site Response Modeling in Seismic Microzonation for Lalitpur, Nepal, M.Sc Thesis, Internatinal institute of geo-information science and earth observations, Enschede, Netherlands. ACMSM23 2014 1254