Uhlíkové nanostruktury-materiály ypro budoucnost?

Similar documents
Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Control of Diameter Distribution of Single-walled Carbon Nanotubes Using the Zeolite-CCVD Method

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Tube tube interaction in double-wall carbon nanotubes

Transport Properties of Novel Carbon Nanotubes and Nanopeapods

Use of Multi-Walled Carbon Nanotubes for UV radiation detection

Optical & Transport Properties of Carbon Nanotubes II

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Interaction between Inner and Outer Tubes in DWCNTs

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Raman study on single-walled carbon nanotubes with different laser excitation energies

2 Symmetry. 2.1 Structure of carbon nanotubes

Carbon Nanomaterials

Graphene and Carbon Nanotubes

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

Wafer-scale fabrication of graphene

Recap (so far) Low-Dimensional & Boundary Effects

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Manipulating and determining the electronic structure of carbon nanotubes

status solidi Department of Biological Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary 2

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Energy Storage. Light-emitting. Nano-Carbons. H 2 Energy. CNT synthesis. Graphene synthesis Top-down. Solar H 2 generation

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

Carbon Nanotubes in Interconnect Applications

status solidi The effects of inhomogeneous isotope distribution on the vibrational properties of isotope enriched double walled carbon nanotubes

Transparent Electrode Applications

Rahul Sen 1, Hiromichi Kataura 2, Yohsuke Ohtsuka 1, Toshinobu Ishigaki 1, Shinzo Suzuki 1 and Yohji Achiba 1 ABSTRACT

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

FMM, 15 th Feb Simon Zihlmann

Supporting Information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Carbon Nanotubes. Andrea Goldoni. Elettra- Sincrotrone Trieste S.C.p.A., s.s. 14 Km 163,5 in Area Science Park, Trieste, Italy

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Carbon Nanotubes (CNTs)

Raman Imaging and Electronic Properties of Graphene

Graphene. Tianyu Ye November 30th, 2011

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Supplementary Information

Carbon Nanotube: The Inside Story

Carbon nanotubes and Graphene

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

PH575 Spring Lecture #28 Nanoscience: the case study of graphene and carbon nanotubes.

Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Isotope Engineering in Nanotube Research

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE

Random Telegraph Signal in Carbon Nanotube Device

Carbon based Nanoscale Electronics

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

In today s lecture, we will cover:

Lectures Graphene and

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

on Self-Assembly of Fullerene Molecules

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

Carbon nanomaterials. Gavin Lawes Wayne State University.

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

The Young s Modulus of Single-Walled Carbon Nanotubes

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

G raphene, which is a gapless material, has gathered much attention due to its prospective fascinating

GRAPHENE the first 2D crystal lattice

Supporting Information Available:

Raman study of pressure screening effects in double-wall carbon nanotubes

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

The World of Carbon Nanotubes

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

From Graphene to Nanotubes

Processing and Properties of Highly Enriched Double-Walled. Carbon Nanotubes: Supplementary Information

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental

Arc-synthesis of Single-walled Carbon Nanotubes in Nitrogen Atmosphere

Chirality and energy dependence of first and second order resonance Raman intensity

In Situ Synchrotron X-ray Diffraction Studies of Single-walled Carbon Nanotubes for Electric Double-layer Capacitors

Yan Li *, Supporting Information

Self-Charged Graphene Battery Harvests Electricity. from Thermal Energy of the Environment

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

SUPPLEMENTARY INFORMATION

Acoustic metamaterials in nanoscale

Effect of dimensionality in polymeric fullerenes and single-wall nanotubes

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

Nanostrukturphysik Übung 2 (Class 3&4)

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

status solidi Raman spectroscopy of ( n, m )-identified individual single-walled carbon nanotubes

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

SUPPLEMENTARY INFORMATION

Supplementary Information

Transcription:

Uhlíkové nanostruktury-materiály ypro budoucnost? Martin Kalbáč IFW Dresden Ústav fyzikální chemie J. Heyrovského, Praha Massachusetts Institute of Technology (MIT), Cambridge,USA

Forms of carbon Nanotubes Fullerenes Diamond Graphite Graphene

Content: 1) Grafen 2) Fullereny 3) Nanotuby 4) Peapody 5) DWCNTs 6) Spektroelektrochemie

Graphite Forms of carbon

Graphene Forms of carbon

Graphene applications Ultrathin conductive films Graphene Used To Create World's Smallest ttransistor Liquid Crystal Device with electrodes made of graphene with different voltages applied. The overall width of the insert image is 30 microns. (Image: Mesoscopic Physics Group, University of Manchester) Dr Ponomarenko, who carried out this work, shows his research sample: graphene quantum dots on a chip.

Graphene applications Single molecule gas detection Ultracapacitors Spin transport Schematic of the resonator. The graphene is in contact with a gold electrode that can be used to electrostatically actuate the resonator. A red laser is used to detect the motion of the resonator by laser interferometry.

Forms of carbon Graphene 0.70 per μm 2 700 000 per mm 2

Graphene Forms of carbon

Graphene Forms of carbon

Chemical vapor deposition (CVD) Cu or Ni Quartz substrate boat Quartz tube Electric furnace Ar H2/CH4 or Ar/H 2 Ethanol tank Hot bath

Chemical vapor deposition (CVD)

Transfer of graphene

Transfer of graphene

Chemical vapor deposition (CVD)

Expo '67 American Pavillion by R. Buckminster Fuller, on Ile Sainte-Hélène, Montreal

C 60 acc. to IUPAC: Hentriacontacyclo[29.29.0.0. 2,14.0 3,12.0 4,59.0 5,10.0 6,58.0 7,55.0 8,53.0 9,21.0 11,20.0 13,18.0 15,30.0 16,28.0 17,25.0 19,24.0 22,52.0 2 3.50.0 26,49.0 27,47.0 29,45.0 32,44.0 33,60.0 34,57.0 35,43.0 36,56.0 37,41. 0 38,54.0 39,51.0 40,48.0 42,46 ]hexaconta- 1,3,5(10),6,8,11,13(18),14,16,19,21,23,25,27,29(45), 11 13(18) 14 16 19 23 25 27 29(45) 30,32(44),33,35(43),36,38(54),39(51),40(48),41,46,49, 52,55,57, 59-triaconten Kroto, Allaf, Balm, Chem. Rev. 91, 1991, 1213

Fullerene gallery C 60 C 70 C 76 C 78 C 82 La@C 84 Sc 3 N@C 84 Endohedral Fullerene M@C 84

Carbon nanotubes

Rolling of SWCNT -zag zigarm-chair

Carbon nanotubes (CNT) SWCNT MWCNT DW CNT

SWCNT Bundles

SWCNT Bundles

Single wall carbon nanotubes (SWCNT) Size: Nanostructures with dimensions of ~1 nm diameter (~10 atoms around the cylinder) Physics: 1D density of electronic states. Single molecule Raman spectroscopy, luminescence, and transport properties. Electronic Properties: Can be either metallic or semiconducting depending on diameter and orientation of the hexagons Mechanical Properties: Very high strength. Good properties on both compression and extension.

Carbon nanotubes (CNT) mechanical properties Fiber material Specific E Strength Strain at break density (TPa) (GPa) (%) CNT 1.3-2 1 10-60 10 HS Steel 78 7.8 02 0.2 41 4.1 <10 CF-PAN 1.7-2 0.2-0.6 1.7-5 0.3-2.4 Kevlar 49 1.4 0.13 3.6-4.1 2.8

Carbon nanotubes (CNT) mechanical properties

Single nanotube transistor Distinctive metallic and semiconducting transport properties IBM Ballistic transport Extremely high current carrying capacity

Chemical vapor deposition (CVD) Quartz boat Quartz tube Electric furnace Ar or Ar/H 2 Ethanol tank Hot bath

Quality vs. price

Commercial 90% carbon purity 500 $ /g Purity of carbon nanotubes

SWCNT from graphene A a 1 6 a 1 a 2 5a 2 C h B Chiral vector: C h = na 6a 1 + ma 5a 2 a 1, a 2. Unit vectors of 2D-hexagonal lattice (6,5)

SWCNT from graphene Armchair nt (n=m) metal Zig-zag nt (n-m) = 3i metal (n-m) 3i semicond. Chiral nt (n-m) =3i metal (n-m) 3i semicond.

Density of states (DOS) in SWCNT Van Hove singularities 2.5 2.5 2.0 1.5 1.0 0.5 (5,5) Armchair tubes (5,5) 5) 2.0 1.5 1.0 0.5 Zig-zag tubes (5,0) om/ev) (states/c-at DOS 0.0 2.5 2.0 1.5 1.0 0.5 2.5-3 -2-1 0 1 2 3 (10,10) -3-2 -1 0 1 2 3 0.0-3 -2-1 0 1 2 3 2.5 20 2.0 (10,0) 1.5 1.0 0.5 0.0-3 -2-1 0 1 2 3 2.5 DOS (states/c-at tom/ev) 2.0 2.0 1.5 10 1.0 (20,20) 1.5 10 1.0 (20,0) 0.5 0.5 0.0 0.0-3 -2-1 0 1 2 3 Energy, ev -3-2 -1 0 1 2 3 Energy, ev

ΔE of singularities vs. diameter of SWCNT ( Kataura graph ) 2χ0 ac C ΔE = SWCNT d d 1.1-1.4 nm (10,10) Ene ergy, ev 1.5 1.0 0.5 0.0-0.5 Energy Sepa aration (ev) 1.8 1.2 0.7 v 2 m c m 2 v s3 c 3 s v m1 c 1 m Energy, ev -1.0-1.5 1.5 1.0 DOS v s2 c s 2 v s1 c s 1 (11,9) 0.5 0.0-0.5 Nanotube diameter (nm) -1.0 (n, m) to (40,40) -1.5 DOS

Vis/NIR spectrum of SWCNT/ITO 0.5 hv Absorbance 0.4 0.3 0.2 v s1 c s 1 v s2 c s 2 v m1 1 c m 0.1 SWCNT ITO 0.0 0.5 1.0 1.5 Energy, ev 2.0 2.5 3.0

SWCNT Bundles

Sorting SWCNT

What is the Raman spectroscopy py about C. V. Raman

Resonance enhanced Raman spectroscopy Approximately 1 in 10 7 photons is inelastically scattered The signal is usally very weak 1) Use of lasers - intensive light 2) Resonance enhancement

Resonance enhanced Raman spectroscopy Virtual state E 1 V 0 Optical transition? E 0 V 1 E 0 V 0 Resonance enhanced spectra 10 2-10 4

Resonance Raman spectroscopy of SWCNT I = c ( E E iγ )( E + E E iγ ) L ii L ph ii 2 E L - laser photon energy E ii - optical transition energy E ph - phonon energy γ - damping constant Typical values for RBM E ph 0.02 ev γ 0.05 ev

Raman spectrum of SWCNT 1.83 ev 2.41 ev TG Raman int tensity, a. u. x 5 x 25 RBM D G 100 150 200 250 300 1300 1400 1500 Raman shift, cm -1 1600 2500 2600 2700 2800 Diameter = 234/ω RBM

Growth of CNT

Raman spectra of SWCNT, hv exc = 1.83 ev x 1.5 y, a.u. man intensity Bundle Ra 150 200 250 300 350 400 Raman shift, cm -1 1520 1560 1600 1640

Creation of defects in SWCNT RF Ar plasma Individual SWCNT Mask Substrate

Defective SWCNT x 30 Raman inte ensity, a.u. x10 3 D mode Pristine part Defective part 140 160 180 200 220 1300 1400 1500 Raman shift, cm -1 1600 2660 2680 2700 2720 Diameter = 234/ω RBM

Formation of fullerene peapod (C 60 @SWCNT) C 60 (g) FULLERENE PEAPOD Nanotube, optimum 1.36 nm

Dy 3 N@C 80 @SWCNT Dy 3 N@C 80 @SWCNT Dysprosium (at approx. 154 ev) from EELS spectra J.Cech, M. Kalbáč, S.A. Curran, D. Zhang, U. Dettlaff-Weglikowska, L. Dunsch, S. Yang and S. Roth: Physica E: Low-dimensional Systems and Nanostructures, in press (2006) Distance (nm)

Raman spectra of Dy 3 N@C 80 @SWCNT hv exc = 1.91 ev y, a. u. intensity Raman Dy 3 N@C 80 @SWCNT SWCNT Dy 3 N@C 80 x 5 200 400 600 800 1000 1200 Raman shift, cm -1 1400 1600 1800

Double walled nanotubes RT C 60 @SWCNT 800 o C 1200 o C DWCNT 1000 o C 1200 o C S. Bandow et al., Chem. Phys. Lett. 337 (2001) 48

Raman spectra of dry DWCNT, hv exc = 1.83 ev Raman intens sity, a. u. OUTER TUBES INNER TUBES 100 150 200 250 300 Raman shift, cm -1 350 400

Double walled nanotubes from different peapod sources (The spectra are excited by 1.83 ev) C 60 -DWCNT C 70 -DWCNT C 78 -DWCNT Raman intensity, a. u. Raman intensity, a. u. Raman intensity, a. u. 240 260 280 300 320 Raman shift, cm -1 340 360 240 260 280 Raman 300 shift, cm 320-1 340 360 240 260 280 300 320 Raman shift, cm -1 340 360 C 84 -DWCNT La@C 82 -DWCNT Dy 3 N@C 80 -DWCNT Raman in ntensity, a. u. Raman in ntensity, a. u. Raman in ntensity, a. u. 240 260 280 300 320 Raman shift, cm -1 340 360 240 260 280 300 320 340 Raman shift, cm -1 360 240 260 280 300 320 Raman shift, cm -1 340 360

In-situ spectroelectrochemistry The change of potential The change of electronic state The change of spectra Methods EPR UV-Vis-NIR Vis Raman FTIR Materials conducting polymers monomers, oligomers fullerenes CNT peapods

Cat2 An1 OCP Cat1 An2 In-situ electrochemical doping of SWCNT anodic/cathodic= extraction/insertion of e - Fermi level Fermi level Fermi level Fermi level Fermi level Fermi level Electrode

Vis-NIR spectra on ITO electrode of SWCNT (0.22 M LiClO 4 + acetonitrile) RE 0.50 Energy, ev 1.5 1.0 CE WE 0.45 0.5 0.0 0.40-0.5 hv bsorbance (A) 0.35-1.0-1.5 DOS A 0.30 Energy, ev 1.5 1.0 0.25 sample ITO 0.0 0.20 0.5 1.0 1.5 2.0 2.5 Energy, ev 3.0 3.5 4.0 0.5-0.5-1.0-1.5 E = 0.0V 0.2V 0.4V 0.6V 0.8V 1.0V 1.2V 1.4V 1.6V DOS

Raman spectra of SWCNT, hv exc = 2.54 ev (0.2 M LiClO 4 + acetonitrile) I = c ( E E iγ )( E + E E iγ ) L ii L ph ii 2 + 1.25 V Spectroelectrochemical cell x40 RE (Ag/AgCl) Pyrex window N -outlet 2 N 2 -inlet CE (Pt) Electrolyte solution -1.75 V an intens ity, a. u. Ram y, a. u. Raman intensity (vs. Fc/Fc + ) WE 140 160 180 200 220 240 1520 1560 1600 1640 Raman shift, cm -1

Raman spectra of DWCNT, hv exc = 1.83 ev (0.2 M LiClO 4 + acetonitrile) 1.5 V 1.2 V 0.9 V Raman inten nsity, a. u. 0.6 V 0.3 V 0V -0.3 V -0.6 V -0.9 V -1.2 V -1.5 V 100 150 200 250 Raman shift, cm -1 300 350 M. Kalbáč, L. Kavan, M. Zukalová and L. Dunsch: Adv. Funct. Mater., 15, 418-426, (2005).

THANK YOU!!! Financial support: GACR-DFG GA AV MSMT-USA Kontakt: martin.kalbac@jh-inst.cas.cz 1) M. Kalbac, L. Kavan, L. Dunsch and M.S. Dresselhaus. Nanoletters, 8, 1257-12641264 (2008). 2) M. Kalbac, L. Kavan, M. Zukalová and L. Dunsch. Chemistry - A Eur. J., 14, 6231-6236 (2008). 3) M. Kalbac, L. Kavan, L. Dunsch. J. Phys. Chem C. 112(43), 16759-16763 (2008). 4) M. Kalbac, H. Farhat, L. Kavan, J. Kong, M.S. Dresselhaus. Nanoletters, 8 (10), 3532-3537 (2008). 5) M. Kalbac, L. Kavan, L. Dunsch. J. Phys. Chem C. 113(4), 1340-1345 (2009). 6) M. Kalbac, L. Kavan, H. Farhat, J. Kong, M.S. Dresselhaus. J. Phys. Chem C. 113(5), 1751-1757 (2009). 7) M. Kalbac, L. Kavan, L. Dunsch: J. Am. Chem. Soc. 131(12) 4529-4534, (2009). 8) M. Kalbac, H. Farhat, L. Kavan, J. Kong, K. Sasaki, R.Saito and M. S. Dresselhaus. ACS Nano, 3 (8), 2320-2328 (2009). 9) M. Kalbac, A. A. Green, M. C. Hersam, and L. Kavan. ACS Nano, 4 (1), 459-469 (2010). 10) M. Kalbac, V. Zólyomi, Á. Rusznyák, J. Koltai, J. Kürti and L. Kavan. J. Phys. Chem C. 114, 25015-2511 (2010).